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Summary

This dissertation is concerned with the development of Markov chain Monte
Carlo (MCMC) methods for the Bayesian restoration of degraded audio
signals. First, the Bayesian approach to time series modelling is reviewed,
then established MCMC methods are introduced.

The first problem to be addressed is that of model order uncertainty.
A reversible-jump sampler is proposed which can move between models of
different order. It is shown that faster convergence can be achieved by ex-
ploiting the analytic structure of the time series model.

This approach to model order uncertainty is applied to the problem of
noise reduction using the simulation smoother. The effects of incorrect au-
toregressive (AR) model orders are demonstrated, and a mixed model order
MCMC noise reduction scheme is developed.

Nonlinear time series models are surveyed, and the advantages of linear-
in-the-parameters models explained. A nonlinear AR (NAR) model, based
on the Volterra polynomial expansion, is described, in which the model se-
lection problem becomes one of subset selection. Subset selection methods
are reviewed, including Bayesian MCMC methods. A new MCMC ap-
proach is formulated, using latent indicator variables in a Gibbs sampler.
It is shown that using analytic results to create a multi-move sampler leads
to better performance.

The effects, and some sources, of distortion in audio recordings are de-
scribed. The few previous attempts to remove these types of distortion
are reviewed. A general method is proposed, based on a cascade model
in which the signal is modelled as an AR process, and the nonlinear chan-
nel as an NAR process. The model structure, order and parameters are
jointly estimated in a MCMC scheme. The method is extended to process
long sequences, in which the audio signal cannot be modelled as stationary,
by estimating the nonlinear model structure and parameters jointly across
all the blocks.

The quantisation distortion present in limited word length digital au-
dio is examined. A model-based framework is proposed for restoring such
quantised signals. In order to implement this, methods are investigated
for drawing samples from truncated multivariate Gaussian distributions.
The restoration is improved by the use of sinusoidal modelling with AR
residuals.
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Introduction 1

1.1 Overview

In the last decade, methods for restoring damaged audio recordings have

progressed from ad hoc methods, motivated primarily by ease of imple-

mentation, towards a more sophisticated approach based on mathematical

modelling of the signal and degradation processes.

This thesis addresses quantisation distortion, a previously unresearched

audio restoration problem arising in poorly manipulated digital audio sig-

nals; develops a new approach to the restoration of nonlinearly distorted

audio; and improves an existing model-based noise reduction algorithm.

Each of these problems is treated as a Bayesian estimation task.

The Bayesian methodology provides an elegant and consistent approach

to statistical problems, in which all assumptions are explicit. Unfortunately,

it tends to require the evaluation of high-dimensional integrals. Until re-

cently, the use of Bayesian methods has been confined by the need to design

the problem carefully so that the integrals are of a form which can be solved

analytically or for which there is a good approximation; conventional nu-

merical integration techniques are of limited value in such problems.

Markov chain Monte Carlo (MCMC) methods, which were first used

in the 1950s, have recently been rediscovered by the Bayesian statistical

community as a means to perform these integrals. This has allowed a much

wider range of problems to be addressed in a Bayesian framework, with the

emphasis shifting towards sensible modelling of the actual problem, rather

than forcing the problem to fit a convenient model.

Digitised audio signals consist of vast quantities of data—a compact disc

contains over five million samples per minute of recording—so research into

audio restoration techniques has tended to concentrate on schemes which

require little computation.

1



2 Introduction

This thesis instead uses a fully Bayesian approach, and uses MCMC for

implementation. This can be highly computationally demanding, but with

the rapid, and continuing, rise in available computing power,1 approaches

which would have been intolerably slow just a few years ago are now merely

inconvenient, and should work at a useful speed within a few years. Taking

such an approach allows previously intractable problems to be addressed.

But the search for speed is not entirely abandoned: by using those ana-

lytical results which are available for the models under consideration, more

efficient MCMC model and subset selection techniques are developed. An-

other contribution is a new method for drawing samples from truncated

multivariate Gaussian distributions, which also lessens the required com-

putation.

1.2 Structure of thesis

Chapter 2 introduces the Bayesian approach to time series modelling, to-

gether with a variety of linear and nonlinear time series models. Chapter 3

reviews Markov chain Monte Carlo methods, which can be applied to oth-

erwise intractable Bayesian problems.

Chapter 4 examines the problem of model order uncertainty, reviews

previous MCMC approaches, then develops a method, based on reversible-

jump MCMC, which exploits some analytic properties of autoregressive

models. Some of this work has previously been published in [188, 192].

This technique is then applied to the problem of noise reduction in audio,

where the correct choice of model order is found to be crucial.

Chapter 5 considers model selection in a situation typical of nonlinear

modelling: there are many candidate model terms, from which a small sub-

set must be chosen. Some of this work has previously been published in

[187, 189] and submitted as [193].

In Chapter 6, the subset selection method is used to model a nonlin-

ear channel in order to restore audio signals which have passed through

it. The audio signals are modelled using the approach developed in Chap-

ter 4. Treating the audio signal as piecewise stationary and the channel as

1Gordon Moore, the co-founder of Intel, predicted in 1965 that the gate density (and hence
processing power) of microprocessors would double and the cost halve every 24 months.
In fact this has happened roughly every 18 months since then.
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time-invariant introduces great flexibility. This work has previously been

presented in [190, 191] and submitted as [193].

Chapter 7 addresses a different type of nonlinear distortion which affects

audio: quantisation distortion. A Bayesian restoration method is proposed,

based on an autoregressive model. Implementing this requires samples to

be drawn from bounded multivariate Gaussian distributions, which is non-

trivial. To improve performance, a sinusoidal model is introduced, with an

autoregressive model used for the residuals. Parts of this work have been

presented in [194] and will be presented in [186, 195].

Finally, Chapter 8 presents conclusions and suggests possible directions

for future research.
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Bayesian time series modelling 2

2.1 Bayesian paradigm

Statisticians are concerned with inferring facts from limited amounts of

available data. A huge variety of techniques has been developed in clas-

sical statistics for distinguishing significant phenomena from artefacts re-

sulting from random variation. Different techniques make different implicit

assumptions, such as Gaussianity, about the problem.

The Bayesian approach [24, 107], is one alternative, based on probabil-

ity theory, which allows much greater flexibility in inference while remain-

ing consistent. Rather than having to decide which classical significance

test is most appropriate to the problem, in Bayesian analysis the posterior

distribution is always used.

The basic Bayesian approach is to set up a model for the system, leading

to a joint probability distribution for all the known and unknown vari-

ables in the system. Nuisance parameters—those whose values are not of

interest—can then be removed through marginalisation. The marginal pos-

terior distribution for the quantities of interest is then used for inference,

either by finding its peak, or by finding the expected value of some function

by integrating over it.

Partly because of the difficulty in evaluating the necessary integrals and

maximisations, Bayesian methods were not widely used for the first two

hundred years after they were first mooted by the Rev. Thomas Bayes in

1763 [15]. The continuing increase in available computing power since the

1970s has, however, made numerical evaluation feasible and led to their

much wider application.

5



6 Bayesian time series modelling

2.1.1 Defining “probability”

The definition of probability taught in schools and used in most dictionary

definitions is the frequentist definition, based on the relative frequency of

occurrence of different outcomes in repeated trials of some experiment. An

alternative is subjective probability, which is a measure of the plausibility of

a proposition, conditional on the observer’s knowledge.

We denote the probability of an event A, conditional on our knowledge

that event B has occurred, as Pr(A � B). Where we are considering continu-

ous random variables, say G and H, rather than discrete events, we use the

probability distribution, pG�H(g � h), such that

Pr(g1 � G � g2 � H � h) �
� g2

g1

pG�H(g � h) dg (2.1)

The probability distribution can be represented in functional form as a prob-

ability density function (p.d.f.).

To simplify notation, we will not usually make the distinction between

random variables, such as G, and their values, such as g. We also will not

label probability distributions using subscripts where the meaning is clear

from the variables or the context.

For a complete discussion of probability and the Bayesian approach, see

Gelman, Carlin, Stern & Rubin [62, Ch. 1] and Bernardo & Smith [19,

Ch. 1–2].

2.1.2 Bayes’ theorem

Bayes’ theorem is a simple relationship of conditional probabilities:

Pr(B � A�C) �
Pr(A � B�C) Pr(B � C)

Pr(A � C)
(2.2)

which can be derived straightforwardly from the product rule for probabil-

ities, which itself follows naturally from Aristotelian inductive reasoning

[106, Ch. 1–2].

The keys to the Bayesian approach are the treatment of unknown pa-

rameters as random variables1, and the interpretation of Bayes’ theorem as

1or, possibly, constants about which we have imperfect knowledge, which we express as a
probability distribution [151, �3.2.1]
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a model of the learning process:

p(� � x��) �
p(x � ���)p(� � �)

p(x � �)
(2.3)

where

� p(x � ���) is the likelihood, which is a function of �, expressing the

probability distribution of the data x conditional on the value of the

parameters � and any underlying modelling assumptions, �;

� p(� � �) is the prior, which expresses our knowledge (or lack thereof)

of the parameter values before examining the data;

� p(x � �) is the evidence, which can be regarded as a normalising

constant; and

� p(� � x��) is the posterior, which is what we know about the param-

eters after examining the data.

For an illustration of how counterintuitive correct inference can be, see [9].

To clarify notation, from now on any conditioning on modelling assump-

tions, �, will be omitted except where relevant.

2.1.3 Priors

The prior distribution represents belief about (or knowledge of) the param-

eter values before examining the data. As shown in Figure 2.1, a narrow

prior distribution implies precise knowledge, and will dominate the poste-

rior. On the other hand, if the prior distribution is broad, it conveys little

knowledge; if it overlaps with, and is much broader than, the likelihood, it

will have little influence on the posterior.

2.1.3.1 Non-informative priors

Jeffreys [107] describes how to choose “non-informative” prior distribu-

tions, which express complete ignorance of the parameter values, and hence

do not influence the posterior. For location parameters (such as means or

offsets), these are uniform, whereas for scale parameters (such as noise vari-

ances), they take the form p(�2) � 1
�2 . These are known as Jeffreys’ priors.
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(a) Broad prior
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(b) “Informative” prior

Figure 2.1. Effect of priors: Probability distributions of the prior (dashed),
likelihood (dotted), and resulting posterior (solid). It can be seen that
whereas in (a), the broad prior has very little effect on the posterior, the
prior in (b) is sufficiently informative to make the posterior unimodal.

In many cases, there is vague prior knowledge of the range in which the

parameter values are likely to lie. Priors can then be chosen which are equal

to the Jeffreys’ priors within that range but have zero probability outside.

Even if such knowledge is unavailable, rough bounds can be estimated from

the data, and used to form an ignorance prior [3] which is non-informative

across the relevant range.

Unlike unbounded Jeffreys’ priors, these bounded distributions are

proper, i.e. �
p(�) d� �� (2.4)

and can hence be normalised, so that they integrate to unity. This en-

sures that the evidence, and hence the posterior (eq. 2.3), are also proper

so that they can be used for drawing samples, estimating values, or com-

paring models.

A more flexible approach, in the absence of definite prior information,

is to choose a prior distribution which is close to non-informative within

the range of interest, but has a convenient, proper form, such as a con-

jugate prior.
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2.1.3.2 Conjugate priors

For a given likelihood function, a conjugate prior [19] is one which will lead

to the posterior taking the same form as the prior, which can greatly simplify

computation, particularly in sequential learning.

For example, if the data, x, is assumed to be i.i.d. Gaussian with mean

�x and variance �2
x, and we wish to estimate �x, the Gaussian likelihood

function can be transformed, using the identity described in �A.2, to be a

Gaussian in �x:

p(x � �x� �
2
x) �

nx�
i�1

N
�
xi � �x� �

2
x

�
(2.5)

� N
�
�x � �likelihood� �

2
likelihood

�
(2.6)

where �likelihood is the sample mean of x, �2
likelihood �

�2
x

nx
, and nx is the length

of the data vector. If we assume a Gaussian prior for �x:

p(�x) � N
�
�x � �prior� �

2
prior

�
(2.7)

then the posterior can be derived using Bayes’ theorem (eq. 2.3) as

p(�x � x� �2
x) � p(x � �)� p(�) (2.8)

� N
�
�x � �likelihood� �

2
likelihood

��N
�
�x � �prior� �

2
prior

�
(2.9)

� N
�
�x � �posterior� �

2
posterior

�
(2.10)

since the product of two Gaussians is itself Gaussian (�A.1). The parameters

of the posterior Gaussian distribution, �posterior and �2
posterior, can be derived

using the results of �A.1, which deals with the general multivariate case.

Similarly, if an inverse Gamma prior were used for the variance, �2
x , then

the posterior, p(�2
x � x� �x), would also be inverse Gamma [19, �A.2].

2.1.3.3 Hyperparameters

Having chosen a functional form for a prior distribution, we then choose

values for the hyperparameters, i.e. the parameters of the prior distribution,

which best represent our prior knowledge.

Hierarchical modelling [62, Ch. 5] is an alternative approach, in which

the hyperparameters are themselves treated as unknowns, with our limited
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knowledge of them expressed by hyperpriors.

In �2.1.3.2, separate priors were assigned to �x and �2
x. If prior knowl-

edge suggested it, they could be assigned dependent priors. If the nature

of their interaction, i.e. the joint distribution, is not known precisely, the

limited knowledge could be expressed as a hyperprior, the parameters of

which—hyperparameters—can then either be estimated, if they are of in-

terest, or integrated out if they are not (see �2.1.5). For complex systems,

directed graphs can be used to represent the dependencies between the pa-

rameters (see e.g. [134]).

2.1.4 Parameter estimation

After the likelihood function for the chosen model has been derived, and

a prior distribution has been constructed for �, incorporating any a pri-

ori knowledge, the posterior distribution, p(� � x), can be evaluated using

Bayes’ theorem (eq. 2.3). This probability distribution contains all current

knowledge about �.

What happens now depends on our goal. If the ultimate aim is to find

the most probable value for �, then we could produce the maximum a pos-

teriori (MAP) estimate,

�̂MAP � arg max
�

�
p(� � x)

�
(2.11)

If the priors are uniform, then this is exactly equivalent to the conventional

maximum likelihood estimate.

This estimate does not, however, convey any information regarding the

error margins or any multimodality. A better strategy is to use the whole of

the posterior distribution in any further calculations.

2.1.5 Marginalisation

Most models have multiple parameters, only some of which may be of in-

terest for solving the problem at hand. Taking the Gaussian example of

�2.1.3.2, with independent priors on �x and �2
x, we can apply Bayes’ theo-

rem to obtain a joint posterior distribution:

p(�x� �
2
x � x) � p(x � �x� �

2
x) p(�x) p(�2

x) (2.12)
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If we are only interested in estimating �x, then �2
x is considered to be a

nuisance parameter, and can be marginalised:

p(�x � x) �
�

p(�x� �
2
x � x) d�2

x (2.13)

� p(�x)
�

p(x � �x� �
2
x) p(�2

x) d�2
x (2.14)

Bayesian inference about �x uses only this marginal probability distribution.

If this integral cannot be performed analytically, numerical methods can

be used (see Chapter 3).

2.1.6 Model selection

2.1.6.1 Motivation

Up to this point, we have assumed that we know the correct form of model

for the problem. In practical modelling problems, there may be many possi-

ble models, which we have to choose between. They could be models from

the same family with different numbers of parameters (such as those intro-

duced in �2.2), or completely different types of model (such as those of �2.3).

We need some means of ranking the models, in order to choose the best.

Due to noise and any random inputs to the model, a model will not fit

the data precisely; there will be some random modelling error or residual.

In practice, none of the available models may exactly describe the physical

process which generated the data, so there can also be a systematic error.

Figure 2.2 illustrates a simple model selection problem. The candidate

models are of the form

fk(x� a(k)) � a1 � a2x � � � �� akxk�1 (2.15)

and each has had its parameter values, a(k), optimised by a least-squares

procedure.

The data points were generated by a model of the same form as f3(x),

but have been corrupted by additive Gaussian noise:

yi � b1 � b2xi � b3x2
i � ei (2.16)
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Figure 2.2. Polynomial curve-fitting problem: 100 noisy data points, gener-
ated by equation (2.16), together with least-squares best fit curves for mod-
els of order 1, 2, 3, 4 and 5.

Table 2.1. Model selection criteria for the polynomial curve-fitting problem:
The minimum, i.e. best, figure in each column is marked with an asterisk.

w.r.t. Noisy data w.r.t. True modela

Model order RMS error AIC BIC RMS error

1 15�2 38�7 41�3 14�0
2 7�41 12�7 17�9 7�76
3 1�34 6�28� 14�1� 0�372�

4 1�33 8�28 18�7 0�382
5 1�31� 10�3 23�3 0�471

aThis measurement of model performance requires access to the true model equation (2.16),
which would not be available in practice.
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where

ei � N
�
ei � 0� �2

e

�
(2.17)

and 	bi
 are the correct parameter values. It is clear from the figure that

the first and second order models fit very poorly, but the higher order mod-

els all seem to fit well.

The root mean square (RMS) error, �̂e(k), is one way of quantifying

goodness of fit. It is defined as the square root of the error sample variance:

�̂2
e (k) �

1
N

N�
i�1

�
yi � f (xi� a(k))

�2 (2.18)

where 	yi
 are the known data points for input values 	xi
. Minimising the

RMS error is equivalent to minimising the residual sum of squares (RSS),

which is what the least-squares algorithm does.

Table 2.1 shows that the RMS error between the models’ predictions

and the data points decreases monotonically with increasing model order,

as each additional parameter gives the model flexibility to fit the data more

closely.

This does not, however, mean that the highest order model is best. The fi-

nal column gives the RMS error between each candidate model’s predictions

and the true noise-free values at each data point. It can be seen that the third

order model agrees best; the higher order ones get progressively worse.

This is called overfitting or overmodelling: the more complex models

have the flexibility to model features of the limited data set which should be

attributed to noise2. In the extreme, a model with N parameters could ex-

actly fit all the N data points. Modelling all these features is not a good idea,

as they are nothing to do with the underlying process—in another set of data

from the same random process, different apparent features would appear.

Overmodelling leads to worse performance when using the model for

tasks such as prediction or interpolation. The principle of Ockham’s razor3

is that simpler models should be favoured over more complex ones.

2or random excitation, in the case of time series models—see �2.2.
3“What can be done with fewer � � � is done in vain with more.”—William of Ockham (born
c.1290)
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2.1.6.2 Classical methods

There are various information criteria which are based on the RMS error

but with penalties for model complexity. Several of these are special cases

of the Generalised Information Criterion (GIC),4

GIC(k� �N) � N ln �̂2
e (k) � �Nk (2.19)

The first component decreases monotonically with increasing model order k,

whereas the second increases linearly, at a rate controlled by �N, to penalise

more complex models. The relative effect of the penalty decreases with

increasing data length, N. This is intuitively reasonable, as random features

tend to cancel out in large data sets.

For Gaussian errors, equation (2.19) can be rewritten as

GIC(k� �N) � �2 ln(maximised likelihood for model k)� �Nk � cN

(2.20)

where cN is a constant dependent only on N.

Akaike’s Information Criterion (AIC) [2] sets �N � 2. It is based on

the information theoretic concept of entropy, has been extensively studied

(see e.g. [99] for a brief bibliography) and is very widely used. It has, how-

ever, been shown to overestimate model orders (see e.g. [112]), and to be

inconsistent, in that the probability of selecting the correct model does not

approach unity as N � � (see e.g. [173]).

The Bayesian Information Criterion (BIC) [169] sets �N � ln N. It

tends to select smaller models than the AIC, and is consistent. It is an

approximation to the Bayes factor (�2.1.6.3) with a particular choice of

prior [112, �4.1.3].

The Minimum Description Length (MDL) approach to model selection

[14] is motivated by coding theory. Essentially, it considers the number of

bits required to describe the model, its parameter values and the modelling

errors to a given precision using an optimal code. It gives rise to a criterion,

of similar form to equation (2.20), which is asymptotically equivalent to the

BIC but arguably better for small data sets [110].

4There are many ways to define the GIC; this one is a modification of those presented by
Haughton [99] and Broersen & Wensink [25].
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There are a number of other criteria and performance indices; see

Gustafsson & Hjalmarsson [94], Haber & Unbehauen [95, �6.1], Koneva

[116] and Dickie & Nandi [50] for reviews and summaries.

Cross validation is an alternative approach. The data set is partitioned

into training and test data; each candidate model is fitted to the training data

and used to predict the test data. The models are judged on the quality of

their predictions as measured by the squared error. A variety of partitioning

strategies are used [178, 210], some of which result in behaviour equivalent

to that of the AIC and other selection criteria.

It seems reasonable to use prediction performance in model selection,

given that the chosen model is likely to be used for prediction [59]. Another

testing-by-prediction approach predicts one sample ahead at each point in

the data set, with all past data available, to yield a criterion asymptotically

equivalent to the MDL [52].

2.1.6.3 Bayesian approach

The Bayesian approach to model selection is through hypothesis testing. We

want to choose the model with highest posterior probability. If we have two

competing models, �1 and �2, then we can assign (perhaps equal) priors

Pr(�1) and Pr(�2) � 1� Pr(�1). From equation (2.3), we have [112]:

Pr(�1 � x)
Pr(�2 � x)� �� �
Posterior odds

�
Pr(x � �1)
Pr(x � �2)� �� �

Bayes factor
(B12)

Pr(�1)
Pr(�2)� �� �
Prior odds

(2.21)

where the marginal likelihoods Pr(x � �i) are calculated by marginalising

the parameter values by integrating over the parameter space (�2.1.5):

Pr(x � �i) �
�

Pr(x � �i��i) p(�i � �i) d�i (2.22)

This differs from the previous methods, which used only one set of values of

the parameters for each model—the maximum likelihood estimates. Hence

the Bayes factors will depend on the priors p(� � �i).

The value of the factor Bij indicates the level of evidence in favour of

model j as opposed to i—the higher the value, the stronger the evidence,



16 Bayesian time series modelling

independent of the prior odds. Kass & Raftery [112, �3.2] reproduce a table

of suggested thresholds for “substantial”, “strong” and “decisive” evidence.

Whereas there was an explicit complexity penalty in each of the infor-

mation criteria (�2.1.6.2), the Ockham effect here is more subtle: unless

we are using a highly informative prior, as the dimension of � increases, a

smaller proportion of the prior’s probability mass falls within the region of

parameter space in which the likelihood is significant. Hence the value of

the integral of equation (2.22) falls, and so models with more parameters

are penalised.

The choice of parameter priors for Bayesian model comparison is a chal-

lenge: if the priors are too diffuse, the Ockham effect is exaggerated and

the simplest model is always chosen. This effect—that priors chosen to

be non-informative for the parameter values can strongly influence model

choice—is known as Lindley’s Paradox [126, 175]. In the extreme case, if

the priors are improper then unknown constants appear on the top and bot-

tom of the Bayes factor; unless we have the same constants in both models’

priors, we cannot calculate the ratio.

Kass & Raftery [112, �5] describe some methods which have been devel-

oped to avoid these problems, including the use of data-dependent proper

priors, chosen to be non-informative in the region of the likelihood. A

cleaner solution, embodied in intrinsic [16] and fractional [149] Bayes fac-

tors, is to use a small part of the data as a training sample. These techniques

allow the use of an improper prior, as the unknown constants cancel. A

similar approach is used by Bishop & Djurić [22].

2.1.7 Model mixing

We saw in �2.1.4 that Bayesian parameter estimation provides a posterior

p.d.f. which contains much more information about the parameter values

and the level of uncertainty than a single estimated MAP value. This poste-

rior density can be used to marginalise unwanted parameters.

Similarly, in Bayesian model selection, the posterior probabilities of the

models under consideration form a posterior distribution, p(�i � x), con-

veying more information than a simple choice of the one most probable

model. It can similarly be used to marginalise the choice of model. For
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example, if our aim is to predict data y given data x, then

p(y � x) �
�

i�all models

p(y � x��i) p(�i � x) (2.23)

uses all models under consideration. This is called model mixing or Bayesian

model averaging. It can give much better predictions than any single model

[156].

2.2 Linear time series models

There are two basic situations in modelling:

Input/output modelling in which we have access to both the input to and

output from the system, and seek to describe the function mapping

from present and past (for a causal system) values of the input to the

output.

Time series modelling in which all we can see is the output. In this case we

want to describe the output in terms of an input/output model acting

on a random, i.i.d. excitation process.

2.2.1 Assumptions

We will restrict ourselves to causal systems. When dealing with record-

ing media, however, non-causal effects, such as pre-echoes caused by print-

through [122], are quite possible.

Digital systems use a discrete-time (sampled) representation of the data,

so it is natural to use discrete-time models, which are much simpler to im-

plement than their continuous-time equivalents (see e.g. [109]). The samples

are also discrete-valued, but, until Chapter 7, we will assume that the quan-

tisation is sufficiently fine that it can be neglected.

We also initially assume that signals are zero-mean and stationary. The

design of the analogue stages of most audio systems ensures that signals are

usually zero-mean. Non-stationarity is addressed in �2.2.3.3 and Chapter 6.

For mathematical simplicity, the excitation is assumed to be i.i.d.
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Gaussian:

et � pe(et � �2
e ) � N

�
et � 0� �2

e

�
(2.24)

The Gaussian distribution is appealing, as it is well understood and has

many useful properties, such as being closed under convolution, which make

it easy to manipulate. Some useful identities are set out in Appendix A.

It also occurs frequently in nature, due to the central limit theorem [118,

Ch. 24].

2.2.2 ARMA model

If 	et
 is a zero-mean i.i.d. excitation process, then an Autoregressive Mov-

ing Average (ARMA) model [23] for a time series 	xt
 can be expressed as

xt �

k�
i�1

aixt�i� �� �
AR terms

�

l�
i�1

biet�i� �� �
MA terms

�et (2.25)

where 	xt
 is the signal, 	et
 is the excitation process, and 	ai� i � 1 � � �k

and 	bi� i � 1 � � � l
 are the parameters.

This is a very general linear time series model. It incorporates both Au-

toregressive (AR) terms, which depend on previous values of the output, and

Moving Average (MA) terms, which depend on previous values of the exci-

tation. The above model is said to have AR terms of order k and MA terms

of order l. Pure AR or MA models can be obtained as special cases of this.

AR models are also known as all-pole models, as the feedback terms

form a filter whose z-transform has poles but no zeros. They are equivalent

to infinite impulse response (IIR) filters. Conversely, the MA model can be

thought of as all-zero, and is equivalent to a finite impulse response (FIR)

filter. It is possible to fit an AR model to an MA process (or vice-versa), but

to do so exactly requires a model of infinite order.

There is a problem with the ARMA model: the likelihood function is

very complicated and difficult to evaluate (see e.g. [132]), and hence the pa-

rameters must be estimated either by search algorithms or by solving sets of

nonlinear equations. There have been some recent advances by factorising

the model into cascaded AR and MA processes [79, 80], but this requires
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the intermediate signal (the output from the AR system, which is the input

to the MA system) to be treated as an additional unknown, which requires

a large amount of computation.

2.2.3 AR model

Because the response of the all-pole filter resembles the resonance of the

vocal tract (see e.g. [48]), AR models have been used extensively in speech

processing, for example in the linear predictive coding (LPC) scheme used

in digital mobile telephones [170], lossless audio coding for DVD-Audio

[44] and in speech enhancement [90, 124, 199]. They have been used

in audio restoration, for example in the removal of clicks and crackles

[78, 82, 83, 87, 89, 146–148, 158, 197, 198], and in model-based noise

reduction [84–86, 88].

One possible drawback with the AR model is that the sum of two inde-

pendent AR processes cannot itself be precisely represented as an AR pro-

cess.5 Hence, if a single instrument can be modelled as an AR process, it

may not be reasonable to use an AR model for the whole orchestra. In

practice, however, there are many useful analytic results associated with

AR models—in contrast to ARMA models, parameters can be estimated in

closed form—so they have been used widely even where there may not be

a good physical justification.

For a purely AR model, equation (2.25) simplifies to

xt �

k�
i�1

aixt�i � et (2.26)

The output is the excitation plus a weighted sum of past outputs at different

lags. The number of parameters, k is often referred to as the model order.

For a signal of length nx, we can rewrite equations (2.26) & (2.24) in

matrix-vector form as

e � Ax � x1 �Xa (2.27)

5It is an ARMA process, as is the sum of two ARMA processes [23, �A4.3].
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and

e � pe(e � �2
e ) � N

�
e � 0� �2

e Ine

�
(2.28)

where Ine is the ne-dimensional identity matrix, 0 is a column vector of ze-

ros, ne � nx � k, and

x �

	
x0

x1



x0 �

�
����

x1

x2
...

xk

�
����� x1 �

�
����

xk�1

xk�2
...

xnx

�
����� e �

�
����

ek�1

e2
...

enx

�
����� a �

�
����

a1

a2
...

ak

�
����� (2.29)

and the matrices X and A are rearrangements of x and a, respectively [23]:

X �

�
�������

xk xk�1 � � � x2 x1

xk�1 xk � � � x3 x2
...

... . . . ...
...

xnx�2 xnx�3 � � � xnx�k xnx�k�1

xnx�1 xnx�2 � � � xnx�k�1 xnx�k

�
��������

(2.30)

A �

�
������������

�ak � � � �a1 1 0 � � � 0 0 0

0 �ak � � � �a1 1 0 � � � 0 0

0 0 �ak � � � �a1 1 0 � � � 0
...

... . . . . . . . . . . . . . . .
...

...

0 � � � 0 �ak � � � �a1 1 0 0

0 0 � � � 0 �ak � � � �a1 1 0

0 0 0 � � � 0 �ak � � � �a1 1

�
�������������

(2.31)

2.2.3.1 Likelihood

We can use this notation to derive the conditional likelihood for x1:

p(x1 � x0� a� �2
e ) � pe(e) (2.32)

� (2	�2
e )�

ne
2 exp

�� 1
2�2

e
eTe
�

(2.33)

� (2	�2
e )�

ne
2 exp

�� 1
2�2

e
(x1 �Xa)T(x1 �Xa)

�
(2.34)
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Note that this is conditional on the initial values of the signal, x0. It is

possible to derive p(x0 � a� �2
e ), and hence to remove this conditioning (see

e.g. [23]), but it causes problems in parameter estimation, as the expression

becomes nonlinear in the parameters. For nx  k, which is usually the case

in work with audio, it is common practice to make the approximation

p(x � a� �2
e ) � p(x1 � x0� a� �2

e ) (2.35)

The Gaussian in Xa of equation (2.34) can be transformed to a Gaussian

in a by using the results of �A.2:

p(x1 � x0� a� �2
e ) � N

�
Xa � x1� �

2
e Ine

�
(2.36)

� N
�
a � (XTX)�1XTx1� �

2
e (XTX)�1

�
(2.37)

which will be useful in parameter estimation. Clearly, the maximum like-

lihood estimate is

âMAP � (XTX)�1XTx1 (2.38)

This result is the same as the least squares estimate, and can also be derived

by differentiating the likelihood.

Similarly, the alternative form of the likelihood (eq. 2.27) can be trans-

formed to be proportional to a Gaussian in x:

p(x1 � x0� a� �2
e ) � N

�
Ax � 0� �2

e Ine

�
(2.39)

� N
�
x � 0� �2

e (ATA)�1
�

(2.40)

which will be helpful when predicting or interpolating x.

2.2.3.2 Stability

The AR model can be viewed as an IIR filter, acting on the excitation pro-

cess, with the following transfer function [181, Ch. 8]:

H(z) �
1

A(z)
(2.41)
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where

A(z) � 1 � a1z�1
� a2z�2

� � � �� akz�k

� z�k
�
(z� p1)(z� p2) � � � (z� pk)

� (2.42)

where 	pi
 are the poles of the transfer function, which, for real 	ai
, will

be real or in complex conjugate pairs.

The filter, and hence the model, will be bounded-input bounded-output

stable6 if all the poles lie within the unit circle on the z-plane.

Although it is possible to enforce stability (see e.g. [137]), it is common

practice simply to assume it (see e.g. [139]).

2.2.3.3 Time-invariance

We have, so far, assumed that the signal is time-invariant, i.e. that it has the

same parameter values throughout. Stationarity is a stronger assumption—

that all statistical characteristics are unchanging. Audio signals are usually

neither time-invariant nor stationary. One way to model such changing

signals is by a time-varying model, in which the parameters of the signal

model are themselves modelled as an unobserved random process whose

changes are either smooth (see e.g. [153, 205]) or abrupt (see e.g. [184,

�3.3.1.7] or [40]).

Audio signals are, however, short-term stationary, i.e. short blocks can

usually be considered stationary. In practice, blocks of duration less than

about 25 ms seem safe [87, 88]. The audio signal can therefore be split up

into short blocks, and each treated separately, except for a requirement for

continuity at the block boundaries, which can be enforced by overlapping

the blocks and fixing the k initial samples in each block to equal the last k

samples in the previous block (see e.g. [88]). It may be reasonable to assume

that the parameters vary slowly, in which case the posterior distribution for

the parameters can be used to form the prior for the following block [79].

In certain estimation problems, some parameters are expected to remain

constant across all the blocks; an approach to this is developed in Chapter 6.

6There is a confusing difference in terminology between the engineering and statistical com-
munities: engineers refer to this as stability, whereas statisticians call it stationarity. To
avoid confusion with the concept introduced in �2.2.3.3, we will use the engineering con-
vention. In fact, for AR models, instability implies non-stationarity, but the reverse is not
true.



2.3. Nonlinear time series models 23

2.3 Nonlinear time series models

2.3.1 Motivation

Linear time series models have been the subject of a huge amount of research

in the 70 years since the introduction of the AR model [209]. They have an

almost complete theoretical framework, and have been used successfully in

countless practical applications.

However, because they model the time series as the output of a linear

system, there is a variety of phenomena, including limit-cycle behaviour and

time-irreversibility [184], which are observed in practice but which are not

represented by linear models.

2.3.2 Volterra modelling

The Volterra series [166] is a very general means of describing a continuous-

time output 	y(t)
 in terms of an input 	x(t)
. The Volterra series expansion

for a causal, time-invariant system can be expressed as

y(t) � H1[x(t)] � H2[x(t)] � H3[x(t)] � � � �� Hn[x(t)] (2.43)

in which the n-th degree Volterra operator Hn[�] is defined by the convolu-

tion

Hn[x(t)] �
� �

0
� � �
� �

0
hn(
1� � � � � 
n)x(t � 
1) � � �x(t � 
n) d
1 � � �d
n (2.44)

and the Volterra kernels hn(�) have unspecified form, but hn(
1� � � � � 
n) � 0

for any 
i � 0� i � 1� 2� � � � � n.

In discrete time, equation (2.44) becomes [55]

Hn[xt] �
��

j1�0

� � �
��

jn�0

hn(j1� � � � � jn)xt�j1 � � �xt�jn (2.45)

This is a generalisation from linear systems theory: for a linear system,

y(t) � H1[x(t)], the first degree kernel h1(t) is the impulse response, which

completely describes the system. For higher-degree systems, hn(t1� � � � � tn)

can be thought of as an n-dimensional impulse response.
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Schetzen [166, ��3.4, 5.3, 5.4] develops an input/output technique for

identifying the highest degree kernel hn(�) by measuring the response of the

system to sequences of n impulses with varying spacing. He then recursively

identifies hn�1(�) in the same way.

This representation leads to an explosive growth of the number of co-

efficients with the degree of the model or the number of lags considered.

Morrison [143, ��2.2, 2.5] considers several methods to combat this, in-

cluding triangularising the matrix representation of the kernels, excluding

cross-terms and neglecting small-valued coefficients. For audio applications,

Reed & Hawksford [160, 161] describe simplifications which can be used

where the linear response is known to dominate over nonlinear components.

There are problems with the use of Volterra series:

� The Schetzen [166] algorithm mentioned above requires knowledge of

the highest degree Volterra operator present in the system. Further-

more, its complexity increases dramatically with degree.

For systems excited by (observable) white Gaussian noise, these prob-

lems are overcome by the use of Wiener G-functionals [166, Ch. 12],

which are mutually orthogonal and hence can be determined indepen-

dently.

� The response of the system in equation (2.43) to the input x(t) � a u(t)

is:

y(t) �
��

n�1

an Hn[u(t)] (2.46)

It can be seen that it behaves as a power series. It therefore suffers

similar convergence problems to the Taylor series: expansions may

only converge for a small range of inputs (see e.g. [166, pp. 200–202]).

The kernels of a Volterra model can be treated either as an infinite num-

ber of coefficients, a vast number of which may need to be stored to give a

good approximation, or as functions.

Discrete Volterra models are widely used in the control literature (see

e.g. [21]), classification problems (see e.g. [157]) and artificial neural

networks [31, 128]. Present applications in audio include input/output
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modelling of audio systems (see e.g. [160]) and nonlinear filtering to pre-

compensate for known loudspeaker nonlinearities [115, 168].

2.3.3 Parametric nonlinear models

An alternative methodology for nonlinear modelling is to use models with

similar structures to those of the parametric linear time series models in-

troduced in �2.2.

There is a plethora of such models, but no universally recognised method

to categorise them. For example, Tong [184, Ch. 3], Tjøstheim [183], and

Chen & Billings [38] take radically different approaches. They can all,

however, be treated as generalisations or specialisations of the nonlinear

ARMA model.

2.3.3.1 Nonlinear ARMA model

The ARMA model of equation (2.25) can be generalised to give the Non-

linear ARMA (NARMA) model. If we restrict ourselves to additive noise,

this takes the form [37]

xt � f (xt�1� � � � � xt�k� et�1� � � � � et�l)� et (2.47)

where f (�), rather than being a simple weighted sum, as was the case in lin-

ear modelling, is now some arbitrary nonlinear function, of which there are

uncountably many from which to choose. Nonlinear AR (NAR) and MA

(NMA) models are obvious simplifications. We now look at some popu-

lar choices for f (�).

2.3.3.2 Bilinear model

Defining

f (�) � a0 �

A�
i�1

aixt�i �

B�
i�1

biet�i �

C�
i�1

D�
j�1

cidjxt�i et�j (2.48)

gives the bilinear model, which contains all the terms of the ARMA model

plus bilinear product terms, so called because they depend linearly on both

the input and the output; if both are varying then the effect is nonlinear.

The above model is denoted BL(A�B�C�D) [32].
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2.3.3.3 Polynomial model

The ARMA model of equation (2.25) is a polynomial of degree one. The bi-

linear model incorporates some second degree cross-product terms. It seems

natural to use polynomials of higher degrees as a systematic means to ap-

proximate unknown nonlinearities [37, 133].

Clearly, if the summations in the Volterra model of equation (2.45) are

truncated to finite length and finite maximum degree, it becomes a polyno-

mial nonlinear MA model.

But there is a problem: for large values at the input, it is explosive—

i.e. the output starts to diverge. Chen & Billings [37] argue that, although

this may prevent the use of polynomial models for simulation, they can

certainly be used for n-step-ahead prediction, provided n is not too large.

Tong [184, pp. 103–107] suggests using censoring, either by bounding the

output of the polynomial to the range �Q, or by using a threshold model

(see �2.3.3.7) to replace the polynomial function with a linear one, l(q),

outside a certain range of the inputs:

f̃ (q) �

��
�f (q) for �q� � R

l(q) for �q� � R
(2.49)

where q contains all relevant variables and ��� is some suitable norm.

2.3.3.4 LITP models

A linear in the parameters (LITP) (or pseudo-linear regression) model is one

in which f (�) can be expressed in the form

f (�) �
k�

i�1

�izi(�) (2.50)

where the �i are parameters and the regressors or basis functions zi(�) are

arbitrary (but fixed, for a given model) functions of past inputs and out-

puts. It can be seen that bilinear, polynomial and Volterra models all fall

within this class. Other LITP models (not discussed here) include radial ba-

sis functions and single layer neural nets. The advantage of using a model

of this form is that many techniques developed for linear models can still

be used (see e.g. [151]).
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2.3.3.5 Additive models

Clearly, even the double summation in equation (2.48) can lead to very

large numbers of parameters, and introducing higher powers makes this

worse—the so-called curse of dimensionality. Additive models [36] assume

no interaction between different lags, i.e.

f (�) � f1(xt�1)� f2(xt�2)� � � �� fA(xt�A) (2.51)

Chen & Tsay [36] argue that, although additivity is a strong assumption,

the nonlinear additive AR (NAAR) model is sufficiently general for many

applications. Chen et al. [34] provide methods to check for additivity.

2.3.3.6 Exponential AR models

Another possibility is to introduce arbitrary nonlinear components to the

function, perhaps supported by physical arguments. One such is the expo-

nential ARMA (EXPARMA) model [37]:

f (�) �
A�

i�1

�
ai � bi exp(�x2

t�i)
�
�

C�
i�1

�
ci � di exp(�x2

t�i)
�

et�i (2.52)

Although nonlinear near xt � 0, this reverts smoothly to linearity as xt �
��.

2.3.3.7 Threshold models

In a threshold model [184, �3.3], different functions f (�) are used depending

on the value of the output at some fixed lag d. This introduces nonlinearities

even when the functions themselves are linear. It can be written as

f (�) �

��������
�������

g(1)(�) if r0 � xt�d � r1

g(2)(�) if r1 � xt�d � r2

...
...

g(q)(�) if rq�1 � xt�d � rq

(2.53)

where the thresholds, ri, satisfy

�� � r0 � r1 � � � � � rq�1 � rq �� (2.54)
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and the g(i) can be defined as for any of the previously mentioned linear

or nonlinear models.

It can be seen that the EXPARMA model discussed earlier is a form

of threshold model with a smooth transition over the threshold. Another

smooth threshold model is the logistic smooth threshold AR model (LSTAR)

[180].

2.3.3.8 Functional coefficient models

Chen & Tsay [35] introduce a different generalisation: they keep the same

form of f (�), say AR, for all inputs, but make each parameter a function of

past inputs. Clearly, the threshold model can be described in this way, by

formulating an f (�) which incorporates all the g(i)(�) and indicators to switch

between them if necessary.

2.3.3.9 Doubly stochastic models

We can go further than this by treating the parameters as the outputs of

stochastic processes. In the Random Coefficient AR (RCA) model, each

coefficient is drawn from an i.i.d. process. The parameters of this process

could be derived from the current state of an (unobserved) Markov chain

[184, �3.3.1.7]. The number of states in the chain and the transition prob-

abilities would then need to be inferred. Clearly, there is a risk of vastly

over-parameterising the model such that there may never be enough data

to allow estimation.

2.3.3.10 State-space models

In a state-space representation (see e.g. [30, 171, 204]), a time series model is

formulated as a combination of a state equation and an observation or mea-

surement equation. The state equation takes an excitation input and gives

an output (that we cannot observe) which is an input to the measurement

equation, which takes a separate excitation or noise input and generates the

output (that we can observe!).

There is a variety of powerful algorithms that can be applied to lin-

ear Gaussian state-space models, including the Kalman filter and Kalman

smoother. See Wu [208, Ch. 7] for an excellent overview.

In the linear state-space literature, the state equation usually has AR
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et
A(z)

xt yt

Figure 2.3. Wiener cascade model: A linear system driving a memoryless
nonlinearity.

form, and the measurement equation MA. Carlin, Polson & Stoffer [29]

generalise these to nonlinear functions—NAR and NMA respectively—to

provide a flexible framework for forecasting and filtering using nonlinear

state-space models with possibly non-Gaussian excitation.

2.3.4 Cascade models

Rather than using large, general nonlinear models, an alternative approach

is to cascade smaller models together, connecting the output of one to the

input of the next. This can correspond to the stages of the system itself;

for example Mercer [141] suggests using three stages in modelling distorted

audio signals:

1. A linear system (with random excitation) to represent the original sig-

nal;

2. A memoryless nonlinearity (MNL) to represent the distortion intro-

duced by the recording medium;

3. A further linear system to represent the equalisation circuitry through

which the signal will have passed after being distorted.

This is known as a Wiener-Hammerstein model [95]: the Hammerstein

model [91] consists of just an MNL followed by a linear system; the Wiener

model is the other way round: a linear system whose output passes through

an MNL (fig. 2.3). Both the Wiener and Hammerstein models can be linear

in the parameters if the component models themselves are.

Block-oriented models are a generalisation of cascade models to allow

arbitrary connections, including feedback and feedforward, between sub-

systems. They are widely used in the control literature.
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2.4 Discussion

This chapter has introduced the concepts behind Bayesian modelling which

underlie all that follows, and then discussed linear and nonlinear time series

models. The AR model will be used as a signal model in Chapters 4, 6 &

7 and, since it is simple, but quite general, the Volterra polynomial NAR

model will be used in Chapters 5 & 6. State-space methods will be used in

�4.7, and different forms of cascade model in Chapters 6 & 7.
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3.1 Motivation

As shown in the previous chapter, it is often necessary to integrate func-

tions over a high-dimensional probability distribution in order to perform

Bayesian inference. For example, to find the expected value of f (�), where

f (�) is some arbitrary function whose expectation exists:

E
�
f (�)

�
�

�
� � �
�

f (�) p(�) d� (3.1)

Unless f (�) and p(�) take convenient functional forms, or can be closely ap-

proximated, it is not usually possible to perform this integral analytically:

numerical methods must be used.

The most straightforward approach to numerical integration is to dis-

cretise the parameter space, �, at some finite resolution, so that the mul-

tidimensional integral can be approximated by a multiple summation. To

illustrate this in a two dimensional, square parameter space:

E
�
f (�)

� � M�
i�1

M�
j�1

f
�
�(i� j)

�
p
�
�(i� j)

�
�2 (3.2)

where

� �
1
M (�max � �min) (3.3)

and

�(i� j) �

	
�min � i�

�min � j�



(3.4)
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The problem with this approach is that for good accuracy a small �, and

hence large M, must be used, but the computation involved is O(MD), where

D is the dimension of �.

Due to the computation required, such deterministic numerical integra-

tion becomes impractical at moderately high dimensions. There are many

variations on this basic technique (see e.g. [148]), but most have similar

limitations. We therefore pursue an alternative approach.

3.2 Monte Carlo integration

Returning to the expectation of equation (3.1), if we have a set of samples

	�n� n � 1 � � �N
 drawn from the distribution p(�), then we can estimate the

value of the integral by a Monte Carlo estimate,

E
�
f (�)

� � 1
N

N�
n�1

f (�n) (3.5)

This is performing stochastic numerical integration. By the laws of large

numbers, this estimate can be improved to any required level of accuracy

by increasing the sample size N.

This approach works for any f (�). However, unless p(�) takes a conve-

nient form, it may be difficult to draw samples from it. Two solutions to

this are importance sampling and Markov chains.

3.2.1 Importance sampling

If we cannot obtain samples from p(�) directly, the conceptually simplest

solution is to draw samples from some similar distribution, say 	(�), then

compensate for the difference in the distributions by importance reweight-

ing [97, �5.4]:

E
�
f (�)

� � �N
n�1 wnf (�n)�N

n�1 wn

(3.6)

where

wn �
p(�n)
	(�n)

(3.7)

This method is typically used to reduce the variance of Monte Carlo esti-

mates by focusing the sampling distribution on the region of interest [76].
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A drawback with this approach is that, for complex p(�), it can be dif-

ficult to find an easily-sampled distribution which is sufficiently similar to

p(�). If 	(�) � p(�) for some values of �, then that part of the distribution

may be represented by only a few samples, with correspondingly very high

weights, resulting in poor accuracy. Rejection sampling (�3.4.2) is a related

approach, with similar limitations.

3.2.2 Markov chains

The alternative approach, which we will pursue, is to draw non-i.i.d. sam-

ples from the correct distribution, p(�). These can be produced using a

Markov chain.

A Markov chain1 is a discrete-time random process which can be mod-

elled as a state machine in which the probability of moving to a new state

depends only on the current state. The transition probabilities for a discrete-

valued process 	x(n)� n � 0� � � � 
 can hence be expressed as a single tran-

sition matrix,

T �

�
��

Pr(S1 � S1) � � � Pr(Sk � S1)
... . . . ...

Pr(S1 � Sk) � � � Pr(Sk � Sk)

�
��� (3.8)

whose columns sum to 1, and where k is the number of states and Pr(Sa �
Sb) is the probability of moving to state Sb in the next step if the current

state is Sa.

The state probabilities at step n can then be calculated as

s(n) �

�
��

Pr
�
x(n) � S1

�
...

Pr
�
x(n) � Sk

�
�
��� � Tns(0) (3.9)

where s(0) is the initial distribution.

All Markov chains have a stationary distribution such that

Tsstat
� sstat (3.10)

1Named after A. A. Markov (1856-1922), who used them to model character and word
sequences in text.
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where sstat is an eigenvector of T with eigenvalue 1. It can be shown [144]

that, iff T has exactly one eigenvalue equal to 1, and no complex eigenvalues

with magnitudes greater than or equal to 1, then the Markov chain has a

unique limiting distribution, such that

lim
n��

s(n) � slim (3.11)

independent of the initial distribution. Similar results hold for continuous-

valued processes [144, 182].

3.3 Markov chain Monte Carlo methods

The Markov chain Monte Carlo (MCMC) approach to evaluating the ex-

pectation of equation (3.1) is to construct a Markov chain with � as its state

variable and p(�) (the target distribution) as its limiting distribution. This

chain is then simulated, from an arbitrary initial state, to provide samples

	�n� n � 1 � � �N
. If enough samples are generated, then the distribution

of the later samples will tend towards p(�).2 These are then used in equa-

tion (3.5) to make a Monte Carlo estimate of the required expectation.

3.3.1 Metropolis-Hastings algorithm

To study the effect of different molecular potential fields on the properties

of fluids, Metropolis, Rosenbluth, Rosenbluth, Teller & Teller [142] model

the fluid as N particles in a finite space3. To estimate quantities of interest,

it is necessary to integrate over all possible configurations of the particles,

according to their probabilities, which are functions of the potential energy.

To obtain samples from the configuration space of the particles, for use in

making a Monte Carlo estimate of the multidimensional integral, the system

is simulated. For each particle in turn, a move is proposed, in which the

particle is translated through a random displacement sampled from a simple

bounded uniform density. This move is then either accepted or rejected,

2Samples at the beginning of the chain will be dependent on the initial state, so they are often
discarded as burn-in. An alternative strategy is to choose an initial state which is expected
to be typical of those produced by the chain [73].

3Strictly speaking, they use a periodic space in order to eliminate boundary effects.
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depending on its effect on the potential energy of the system, in order to

produce samples whose potential energy follows a Boltzmann distribution.

Hastings [98] generalises this to produce a method for constructing

Markov chains with any desired limiting distribution p(�), with arbitrary,

including asymmetric, proposal distributions.

The chain starts in an arbitrary initial state �(0). At each step, a new

state ��(n� 1) is proposed by sampling from some convenient proposal dis-

tribution q
�
��(n � 1) � �(n)

�
. An acceptance probability,

�
�
�(n) � ��(n � 1)

�
� min

�
1�

p
�
��(n� 1)

�
p
�
�(n)

�� �� �
Target

probability ratio

q
�
�(n) � ��(n � 1)

�
q
�
��(n� 1) � �(n)

�� �� �
Transition proposal

probability ratio

�
(3.12)

is calculated. Then, with probability �(�(n) � ��(n�1)), the proposed state

is accepted, and the chain moves: �(n�1) � ��(n�1). Otherwise, the chain

remains in the same state: �(n � 1) � �(n).

This form of acceptance probability ensures that the reversibility con-

dition [98] is satisfied:

p(�A) q(�B � �A)�(�A � �B) � p(�B) q(�A � �B)�(�B � �A) (3.13)

i.e. the probability of being in state A and moving to state B is equal to that

of being in state B and moving to state A.4 Together with irreducibility and

aperodicity, this is sufficient to ensure that the stationary distribution is p(�)

and the chain will converge to that, independent of the initial state [144].

A useful feature of the Metropolis-Hastings algorithm is that the target

distribution need only be known up to a constant of proportionality, as the

acceptance probability only uses the ratio p(��)
p(�) .

In equation (3.12), all components of � are updated at once (a global up-

date [144]). This need not be the case: Metropolis et al. [142] sample pairs

of coordinates (associated with a single particle) in rotation (fixed scan, lo-

cal update), and Hastings [98] allows for arbitrary blocking of components

with either fixed or random scanning.

4For continuous distributions, detailed balance, an equivalent integral form of this condi-
tion, is used [144].
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Where multiple blocks of components are used, the acceptance proba-

bility becomes:5

�

�	
�[i]

�[�i]



�
	
��[i]

�[�i]


�
� min

�
1�

p
�
��[i] � �[�i]

�
p
�
�[i] � ��[�i]

� q
�
�[i] � ��

�
q
�
��[i] � �

� � (3.14)

where the notation �[i] and �[�i] denotes partitioning into those elements

currently being sampled and the remainder, which remain fixed, and p
�
�[i] �

�[�i]
�

is the full conditional distribution for the component �[i].

All that is required for convergence is that, as the number of iterations

tends to infinity, so each component will tend to have been sampled infinitely

often [182]. The relative merits of different blocking and scanning patterns

are discussed in �3.5.3.

The proposal distribution, q
�
��[i] � �

�
, can be any distribution from which

it is convenient to sample. Algorithms can be separated into three broad

classes according to the components on which the proposal distribution

is dependent.

3.3.1.1 Metropolis sampler

The original scheme of Metropolis et al. [142] uses a proposal distribu-

tion of the form

q
�
��[i] � �

�
� g

�����[i] � �[i]

��� (3.15)

where g(�) is an arbitrary function. This is known as a random-walk sam-

pler.

In the Metropolis sampler, which is a generalisation of this, the proposal

distribution can take any form which is symmetric, i.e.

q
�
�� � �� � q

�
� � ��� (3.16)

so that the terms in equation (3.14) involving q(�) cancel, leaving just the

ratio of target (conditional) probabilities.

The variance of the proposal distribution is important: if it is too narrow,

5For clarity, the (n) and (n�1) arguments are neglected from here on, except where they are
necessary to avoid ambiguity.
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the chain will not move quickly through the parameter space; if it is too

broad, most proposed moves will have low acceptance probabilities. Both

cases lead to slow convergence.

3.3.1.2 Independence sampler

In the independence sampler [98, 182], the proposal distribution is fixed,

independent of �. Where there is detailed knowledge about the likely pa-

rameter values, this can be used to construct a proposal distribution which

will concentrate sampling in that area. For example, in sampling for the fre-

quencies of component sinusoids, the Fourier transform of the signal could

be used as a proposal distribution (see [7] and �7.3). If the likely param-

eter distribution can be very closely approximated, it might be possible to

use importance sampling (�3.2.1), which has the advantage of producing

i.i.d. samples.

3.3.1.3 Gibbs sampler

The Gibbs sampler [61] is a special case of the Metropolis-Hastings algo-

rithm, in which the proposal distribution for each component is that com-

ponent’s full conditional distribution:

q
�
��[i] � �

�
� p

�
�[i] � �[�i]

�
(3.17)

This makes the q(�) terms in the acceptance probability (eq. 3.14) cancel the

p(�) terms, so that the acceptance probability becomes 1, i.e. all moves are

accepted. This greatly simplifies implementation.

Used in image restoration, the original implementation of the Gibbs sam-

pler samples a single pixel’s value at a time, in a fixed scan. Geman &

Geman [65] suggest that, since the full conditional distribution for a pixel

under their Markov random field image model is dependent only on the val-

ues of neighbouring pixels, a parallel implementation should be possible,

giving great speed advantages.

A Gibbs sampler in which several components are sampled jointly,

i.e. the partition (�)[i] contains several terms, is sometimes referred to as a

multi-move Gibbs sampler (see �3.5.3.2).
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3.3.2 Reversible-jump MCMC

Reversible-jump MCMC [92] is a generalisation of the Metropolis-Hastings

algorithm to cases where the dimensionality of the parameter space is itself

an unknown parameter. Jump diffusion [93] is a similar approach. This

problem arises in model selection: candidate models may have differing

numbers of parameters.

In addition to standard Metropolis-Hastings or Gibbs sampler moves,

new moves are introduced which jump between parameter spaces of differ-

ing dimension. The form of the acceptance probability is such that detailed

balance (see �3.3.1) is satisfied within each class of move.

The reversible-jump methodology can be illustrated using the Bayesian

model selection problem of �2.1.6.3, where there are multiple models of

different orders, which are being used to fit the data x. The k parameters

associated with the model of order k are represented by the vector �(k).

Standard Metropolis-Hastings or Gibbs sampler moves can be used to

sample �(k) while staying within the same model.

A new type of move can be proposed to go from a model of order k to

one of order k�, with probability J(k� � k). This is called the move prob-

ability, and incorporates the probability of choosing to propose this type

of move. If k� � k then this is called a birth move; if k � k� then it is

a death move.

The derivation of the acceptance probability [92] introduces a dimen-

sion matching requirement. If the proposed new parameter value, �(k�), is

calculated as a deterministic function of the existing parameter value, �(k),

and an additional random vector,

u(k�k�) � q(u(k�k�)) (3.18)

of dimension m(k�k�), and k � m(k�k�) � k� � m(k��k), then the requirement

is met [92].

This leads to an acceptance probability of the form

�
�
(k� �(k)) � (k�� �(k�))

�
� min

�
1�

p
�
k�� �(k�) � x

�
p
�
k� �(k) � x

�� �� �
Target probability

ratio

J
�
k � k�

�
J
�
k� � k

�� �� �
Move proposal

probability ratio

q
�
u(k��k)

�
q
�
u(k�k�)

�� �� �
Random vector
proposal ratio

�����
�
�(k�)� u(k��k)

�

�
�(k)� u(k�k�)

�
������ �� �

Jacobian

�
(3.19)
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3.3.3 Simulated annealing

In metallurgy, annealing is a means to allow a material to reach its low-

est energy state, which consists of large crystals. The material is heated

to a very high temperature, so that molecules have sufficient kinetic energy

to overcome any energy barriers, then gradually cooled, following an an-

nealing schedule.

In annealed MCMC [144, �6.1], the temperature, T, becomes a param-

eter of the stationary distribution, e.g.

	T(�) � p(�)
1
T (3.20)

Hence the acceptance probability function and (optionally) the proposal dis-

tribution also depend on T. At T � 1, the acceptance probability is the same

as in standard MCMC, so samples are produced from the target posterior

distribution. At high values of T, the stationary distribution is flattened,

and so the acceptance probability tends to 1 and the chain can move freely

through the state space, regardless of the target distribution. At T � 0,

only moves to lower energy (higher probability) states are accepted, so the

chain behaves like a deterministic gradient descent algorithm, converging

on the nearest minimum.

During cooling, the chain can hop between modes by jumping over the

energy barrier. Following an annealing schedule until T is almost 0 will

exaggerate the target distribution and hence converge on a mode. Under

certain conditions, it has been shown that annealing schedules of the form

T � 1
log n are guaranteed to converge to the global minimum [65]. Unfortu-

nately, such logarithmic schedules are much too slow to be of practical use.

Popular optimisation techniques use much faster schedules, which cannot

be similarly justified [144].

Stopping cooling at T � 1 allows samples to be generated from the p(�),

as in standard MCMC. Multiple runs should be more likely to explore all

parts of the parameter space than in standard MCMC.

In Metropolis-coupled MCMC [76, �6.4.2], one chain is run at T � 1,

and others at a series of higher temperatures. Metropolis-Hastings moves

are included which can swap states between the chains, enabling the base

chain to benefit from the good mixing properties of the higher temperature

chains, whilst still having the correct stationary distribution. A development
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of this, known as simulated tempering [74], saves computation by running

only one of these chains at a time, but introduces moves which allow a

different temperature to be chosen. Samples produced by chains other than

the base chain are discarded.

Another approach is simply to run the chain at some temperature T � 1,

then use importance sampling (�3.2.1) to reweight the samples from 	T(�)

to evaluate expectations over p(�). For T reasonably close to 1, this gives

the advantage of better mixing whilst still retaining accuracy.

3.4 Sampling difficulties

Given a source of random or pseudo-random numbers from a uniform dis-

tribution, there is a wide range of distributions from which it is straight-

forward to produce samples, including Gaussian and Gamma distributions

(see e.g. [105, 155]), and transformations of these such as inverse Gamma.

It is often, however, desirable to use different distributions as proposal dis-

tributions in MCMC systems; Gibbs samplers, for example, require samples

from the full conditional distribution. Methods for producing samples from

arbitrary distributions include inverse c.d.f. methods and rejection sampling.

3.4.1 Inverse c.d.f. methods

If the cumulative distribution function (c.d.f.), F(�), of a desired univariate

proposal distribution p(�) is known and can be inverted, then uniform sam-

ples,

x � U(x � 0� 1) (3.21)

can be transformed to i.i.d. samples from p(�) as follows:

� � F�1(x) (3.22)

If F(�) is not available, it can be approximated by evaluating p(�) at a num-

ber of points (a grid) � � �1� �2� � � � �n, then interpolating between these

points. When used to sample from full conditionals for the Gibbs sampler,

Tanner [179] calls this method Griddy Gibbs. With the use of non-uniform

and adaptive grids and judiciously chosen interpolation methods, good re-

sults can be obtained.
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3.4.2 Rejection sampling

Rejection sampling, first proposed by von Neumann [200], is an alterna-

tive approach which can readily be generalised to produce samples from

multivariate distributions.

An envelope distribution, q(�), is chosen, which is similar in shape to

the target distribution, p(�), but from which it is convenient to sample. A

scaling factor, s, is found which is the minimum value which satisfies

s q(�) � p(�) � � (3.23)

A value is proposed by drawing

�� � q(�) (3.24)

then an acceptance probability is calculated:

�rs(��) �
p(��)

s q(��)
(3.25)

With probability �rs(��), the proposed value is accepted, and output as a

sample from p(�). Otherwise, it is rejected and new values must be repeat-

edly proposed until one is accepted.

Although apparently similar to the independence sampler (�3.3.1.2) re-

jection sampling has the advantage that it produces i.i.d. samples, whereas

rejected moves in the independence sampler lead to correlation. It has, how-

ever, a lower acceptance rate.6

6The acceptance probability for the independence sampler with the same proposal distribu-
tion is

�indep(� � �
�) � min

�
1�

p(��)
p(�)

q(�)
q(��)

�
(3.26)

From equation (3.23),

s �
p(�)
q(�)

�� (3.27)

using this with equation (3.25) and cancelling the terms involving �� gives

�rs(�) � �indep(� � �
�) ����� (3.28)

We have not seen this result presented elsewhere.
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It can be very difficult to construct an envelope function which is good

enough to give acceptably low rejection rates. If no standard distributions,

or mixtures thereof, are close enough, a piecewise approximation can be at-

tempted. In adaptive rejection sampling (ARS), a piecewise exponential en-

velope function is improved, by dividing one of the pieces, each time a sam-

ple is drawn [77, �5.3.3]. Adaptive rejection Metropolis sampling (ARMS)

[77, �5.3.5], extends ARS to non-log-concave distributions by allowing the

envelope function to fall short of the target distribution in some places, then

correcting for this using a Metropolis-Hastings step.

The use of rejection sampling, and other methods, to sample from trun-

cated Gaussian distributions is discussed in �7.2.3.2.

3.5 Convergence

The various MCMC methods which have been described construct Markov

chains which can be shown to converge to the correct stationary distribu-

tion, independent of the starting point, as the number of iterations tends

to infinity. Running the chain for an infinite number of iterations is not an

option, so we need to decide how many iterations should be discarded as

burn-in, and how many subsequent iterations should be used to obtain an

acceptable level of accuracy.

3.5.1 Theory

For certain target distributions, and chains complying with certain condi-

tions, geometric convergence can be guaranteed and there are lower bounds

on the rate of convergence [6, 150]. Unfortunately, these bounds tend to

be extremely conservative: in practical MCMC, much faster convergence is

often observed. Recent results are, however, becoming more realistic [163].

3.5.2 Diagnostics

In the absence of useful theoretical guidance, many tools have been de-

veloped to help assess whether a chain has converged (see e.g. [140] for

a review).
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The first problem is to decide at what point the chain has started pro-

ducing samples (approximately) from the target distribution. The most com-

mon approach is to use some measure of stationarity [98]. The assumption

is that, if the chain’s output appears to be stationary, then the chain must be

in its unique stationary distribution, which is the target distribution.

The problem with this approach is that there may be narrow peaks, per-

haps of significant probability mass, in the target distribution, which the

sampler has not yet encountered. Mengersen et al. [140] describe this as the

“you’ve only seen where you’ve been” principle. Gelman & Rubin [63, 64]

suggest that this risk can be lessened by running multiple chains, with differ-

ent initial values drawn from some approximation to the target distribution.

When all the chains seem to have converged to the same distribution, they

argue that it is likely to be the right one.

The drawback of this multiple chain approach is that each of the m

chains takes n iterations to converge, requiring m� n iterations to be com-

puted before samples can start to be drawn for use in the estimation. Geyer

[72] argues that this is both wasteful and unlikely to detect failure to con-

verge for some (possibly degenerate) distributions. He argues that expend-

ing that amount of computation on a single chain is more likely to lead

to convergence.

In deciding how many iterations are needed, after convergence, for use in

the Monte Carlo estimate, the correlation between samples leads to the stan-

dard results, which assume i.i.d. samples, providing an underestimate [182].

Simulation from multiple chains here has an advantage: the different chains

are independent, which should reduce the required number of samples.

MCMC convergence is a highly active research area, but it is not the fo-

cus of this thesis. In the work that follows, convergence is monitored simply

by plotting the evolution of either the parameter values or the overall per-

formance in reconstruction tasks. In making inference, as many samples as

possible are used. We are generally only interested in samplers which con-

verge quickly, as, given the huge amount of data involved in audio process-

ing, it is not practical to compute the huge numbers of iterations commonly

used by the statistical community.
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3.5.3 Faster convergence

Despite the difficulty in predicting convergence rates and detecting conver-

gence, there are some techniques which have been shown to speed con-

vergence.

3.5.3.1 Scanning patterns

Samplers with random scan patterns are more amenable to theoretical anal-

ysis, as their output is both reversible and acyclic [26, 131].

It has been observed that, for some classes of sampler and target dis-

tribution, random scanning leads to faster convergence than fixed scanning

[176]. Roberts & Sahu [163], however, show that this is not a general rule:

e.g. for Gaussian target distributions, the best choice of scanning pattern

depends on the target covariance matrix.

3.5.3.2 Correlated components

When highly correlated components are only sampled separately, conver-

gence tends to be slow [130, 131]. This can usually be mitigated by repa-

rameterisation [60], or by blocking—i.e. sampling the highly correlated pa-

rameters jointly—where possible [131]. Roberts & Sahu [163] demonstrate

that the effects of blocking are dependent on the problem; they show exam-

ples where blocking slightly slows convergence.

3.6 Summary

This chapter has highlighted the need for numerical methods in Bayesian

analysis and the limitations of direct numerical integration, then introduced

several variants of the MCMC approach, on which the following chapters

rely. It has also considered some of the implementation details, such as

procedures for drawing random samples from arbitrary distributions (which

are investigated further in Chapter 7), means for diagnosing misconvergence

and techniques which tend to speed convergence.
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4.1 Motivation

In time series modelling problems, the model order is usually unknown. Sec-

tion 2.1.6.2 described commonly-used criteria for judging the best model or-

der. Choosing a model order is not often the ultimate aim of a modelling ex-

ercise. More commonly, there is some other task to perform in the presence

of model uncertainty, such as prediction, interpolation or noise reduction.

In this chapter, concentrating on the AR model, we examine means to

allow for model order uncertainty in an MCMC framework, introducing

the possibility of model mixing, in which estimates are based on a combi-

nation of different models according to their posterior probabilities. This is

explored, for the case of audio noise reduction, in �4.7.

4.2 Model selection using MCMC

As discussed in �2.1.6.3, given data x and candidate models 	�(k)� k �

1 � � �kmax
, each with parameters �(k), Bayesian model selection is performed

on the basis of the posterior model probabilities, p(�(k) � x).

These can be evaluated using MCMC by treating the model index, k, as

an unknown parameter, and so updating it at each iteration. The obvious

next step is to set up a Markov chain to generate samples from p(k� �(k) � x)

then use these samples to make a Monte Carlo estimate of p(k).

There is a problem with this approach: if the models under comparison

have differing numbers of parameters, then p(k� �(k)) will be a probability

measure over spaces of varying dimension, which cannot be compared.

45
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4.2.1 Carlin & Chib

This problem can be overcome by ensuring that the dimension remains con-

stant, whichever model is being considered. Carlin & Chib [28] do this

by sampling from a composite model space consisting of all of the param-

eters of all the models under consideration, i.e. they produce samples from

p(k� �(1)� �(1)� � � ��(kmax)).

They use the Gibbs sampler to sample from the joint distribution. For

simplicity, we assume that the components of each parameter vector are

sampled jointly; smaller blocks may be used in practice. Each model’s

parameter vector is sampled independently, from its full conditional dis-

tribution:

�(j) �
��
�p(�(k) � x��(k)) if j � k

�(�(j) � �(k)) if j �� k
(4.1)

where �(�) is called the pseudo-prior [28], which can be any proper distribu-

tion, as �(j) has no effect on the model when k �� j.

The model index is sampled, in another Gibbs move, from

k � p(�(k) � x� �(1)� � � ��(kmax)) (4.2)

which can be constructed from

Pr(�(k) � x� �(1)� � � ��(kmax))

�

p(x � �(k)��(k))
��kmax

i�1 p(�(i) � �(k))
�

p(�(k))�kmax
j�1

�
p(x � �(j)��(j))

��kmax
i�1 p(�(i) � �(j))

�
p(�(j))

� (4.3)

To speed convergence, Carlin & Chib suggest choosing pseudo-priors which

approximate the full conditional distribution for the parameters, i.e. �(�(j) �
�(k)) � p(�(j) � x��(j)).

As an implementation note, they suggest that, if one of the models un-

der consideration has very high probability, leading to slow convergence, its

prior probability can be reduced to encourage better mixing; as the Bayes

factor is calculated from the ratio of posterior to prior probabilities, it will

not be affected.
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This is not an efficient method, as all parameters of all models must be

sampled at each iteration. Godsill [81] considers the issues of composite

models and pseudo-priors in detail.

This approach has the advantage that it can be used to compare models

of completely different structure. Where the models are sufficiently similar

that some of the parameters, �, appear with the same interpretation in all

the models, computation could be reduced by sampling only one instance

of �, the value of which is shared by all the models. In nested models, all

the parameters of a lower order model can be incorporated, with the same

interpretation, in higher order models. In the model of order k,�(k), the pa-

rameter vector �(k) has k elements, although there may be additional shared

parameters in �, such as noise variances which are common to all models.

We now consider a model selection method which can make use of the

relationship between the parameters of models of different orders.

4.2.2 Reversible-jump

Rather than using a Gibbs sampler, the composite model space of �4.2.1 can

be sampled using Metropolis-Hastings moves (�3.3.1). Godsill [81] shows

that, if new values (k�� ��(1)� � � ���(kmax)) are proposed by drawing from inde-

pendent proposal distributions

k� � J(k� � k) (4.4)

��(j) �
��
�q(��(k

�) � x��(k�)� �(k)) if j � k�

�(��(j)) if j �� k�
(4.5)

where J(�) and q(�) are arbitrary proposal distributions and �(�) is a pseudo-

prior, then all terms involving parameters of models other than �(k) and

�(k�) cancel from the acceptance probability, leaving

�
�
(k� �(1)� � � ��(kmax)) � (k�� ��(1)� � � ���(kmax))

�
� �

�
(k� �(k)) � (k�� ��(k

�))
�

(4.6)

� min
 

1�
p(�(k�)� ��(k

�) � x)

p(�(k)� �(k) � x)

J(k � k�)
J(k� � k)

q(�(k) � ��(k�))
q(��(k

�) � �(k))

!
(4.7)
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Hence the parameters of models 	�(j)� j �� 	k� k�

 are not used, and so

need not be sampled at all.

Equation (4.7) is equivalent to the reversible-jump acceptance probabil-

ity (eq. 3.19), except that there is no Jacobian term, as the new parameter

values are proposed directly rather than as a function of the old param-

eter values and a separate random vector [92]. Dellaportas, Forster &

Ntzoufras [47] also note the relationship between composite models and

reversible-jump.

4.2.3 Application to AR model order

Much previous work on AR model order uncertainty using MCMC has

reparameterised the model in terms of partial autocorrelation coefficients,

r. This has the advantage that the region in r-space which corresponds to

stable AR models is a simple cuboid, from which samples can easily be

drawn. There is a one-to-one mapping between r(k) and a(k).

Barnett, Kohn & Sheather [13] include all coefficients up to a specified

maximum order, then perform subset selection by associating a binary indi-

cator variable with each coefficient, in a similar manner to that described

in Chapter 5.

Barbieri & O’Hagan [10] and Andrieu, Doucet & Duvaut [8] work

within a reversible-jump framework. They use only two types of model

order move: (�(k)� r(k)) � (�(k�1)� r(k�1)) and (�(k)� r(k)) � (�(k�1)� r(k�1)).

The AR model is treated as a nested model under the new parameterisation,

so those elements of r which are common to both the current and proposed

models remain unchanged.

Huerta & West [104] instead reparameterise the model in terms of the

positions of individual real poles and pairs of complex conjugate poles. In

many applications, this allows straightforward decomposition of the signal

into components with different physical significance.

4.3 Modelling framework

An alternative approach is to use the natural parameterisation of the model.

The advantage of this over the methods of �4.2.3 is that it allows greater
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analytic simplification of the resulting algorithms. At present, stability is

not enforced; for the applications of �4.7 and Chapters 6 & 7, this has not

proved to be a problem.

This section describes the model and Bayesian framework; �4.4 will con-

sider the design of the reversible-jump sampler.

4.3.1 Autoregressive model

From �2.2.3, a signal x can be modelled as an AR process with white Gaus-

sian excitation as follows:

xt � et �

k�
i�1

a(k)
i xt�i (4.8)

where

et
i.i.d.� N

�
et � 0� �2

e

�
(4.9)

is the excitation sequence and a(k) is the AR parameter vector for a kth order

model. This can be rewritten in matrix-vector form as

e � Ax � x1 �X(k)a(k) (4.10)

where x0 and x1 are formed by partitioning x into, respectively, the first k

values and the remainder1, and A and X(k) take appropriate forms.

Since the excitation sequence is Gaussian, the (approximate) likelihood

takes the form [23, �A7.4]

p(x � k� a(k)� �2
e ) � p(x1 � x0� k� a(k)� �2

e ) (4.11)

� N
�
e � 0� �2

e Ine

�
(4.12)

� (2	�2
e )�

ne
2 exp

�� 1
2�2

e
eTe
�

(4.13)

where ne is the length of e and x1.

1Because it is necessary in later experiments to ensure continuity between adjacent blocks
of the signal, a different partitioning is used for experiments: x1 contains the current block
of the signal, of fixed length, and x0 contains k initial values, taken from the end of the
previous block. For clarity, the more conventional partitioning is used in descriptions and
derivations.
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4.3.2 Prior distributions

As discussed in �2.1.3, prior distributions represent knowledge of or belief

about parameter values before examining the data. k, a(k), �2
a and �2

e are

assumed to be a priori independent. For the model order, we choose a

simple bounded uniform distribution:

p(k) �

��
�

1
kmax�1 if k � 	0� 1� � � �kmax

0 elsewhere

(4.14)

where kmax is set high enough to have no effect on model selection. If more

specific prior model probabilities are available, they can be used instead.

In order to perform Bayesian model selection, we must use proper priors

for the model parameters (see �2.1.6.3). For the AR parameters, we use the

conjugate prior, which is a multivariate Gaussian distribution:

p(a(k) � �2
a ) � N

�
a(k) � �pa(k)�Cpa(k)

�
(4.15)

In the absence of any genuine prior knowledge, we set �pa(k) � 0 and

Cpa(k) � �2
a Ik, but any multivariate Gaussian could be used without signifi-

cant changes to the MCMC framework.

The excitation variance is assigned its conjugate prior,

p(�2
e ) � IG

�
�2

e � �e� �e

�
(4.16)

where the inverse Gamma distribution [108] is defined for positive param-

eters � and �, and positive �, as

IG(� � �� �) � ��(��1) exp(����) (4.17)

which tends to the uninformative Jeffreys’ prior for scale parameters as

�� � � 0.

The hyperparameter �2
a is assigned a similar inverse Gamma prior, which

is again conjugate:

p(�2
a ) � IG

�
�2

a � �a� �a

�
(4.18)
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4.3.3 Bayesian hierarchy

The joint posterior distribution for the model parameters can then be ob-

tained using Bayes’ theorem (eq. 2.3) as

p(k� a(k)� �2
a � �

2
e � x) � p(x � k� a(k)� �2

e )� �� �
Likelihood

p(k) pa(a(k) � �2
a ) p(�2

a ) p(�2
e )� �� �

Priors

(4.19)

4.4 Reversible-jump sampling strategies

It is straightforward to sample �2
e and �2

a , which are common to all the

candidate models, using Gibbs sampler moves, which will be described in

�4.5.1.

We now develop three possible approaches to reversible-jump sampling

of the model order, k, and corresponding parameters a(k).

4.4.1 Straightforward approach

In his paper introducing reversible-jump sampling [92], Green describes

a simple method for designing moves between models which satisfy the

“dimension-matching” requirement (see �3.3.2). It can be applied to the

AR model as follows:

4.4.1.1 Birth move

For a birth move, i.e. from a model of order k to one of order k� � k � n,

a value of a(k�) should be calculated as a deterministic function of a(k) and

u(k�k�), where u(k�k�) is a random vector of dimension n. Since this is a

nested model, the simplest way to do this is to leave the common parameters

of the two models unchanged, and draw the values of the proposed new

parameters from some other distribution, such as their prior.

To simplify notation, we denote these new parameters a(k�)
u rather than

u(k�k�), such that (�)u denotes the parameters which are being updated. a(k�)
f

contains the rest of the parameters, which remain fixed under the proposed
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move, as follows:

a(k�)
u �

Prior� �� �
p(a(k�)

u � �2
a ) (4.20)

a(k�)
�

	
a(k�)

f

a(k�)
u



�

	
a(k)

a(k�)
u



(4.21)

4.4.1.2 Death move

The corresponding death move, from order k to order k� � k � n, is purely

deterministic:

a(k�)
� a(k)

�1���k�n� (4.22)

where the notation (�)�a���b� represents a vector containing the components

with indices between a and b.

4.4.1.3 Acceptance probabilities

Birth or death moves are proposed by sampling k� � J
�
k � k�

�
. For sim-

plicity, a symmetric random-walk proposal distribution (�3.3.1.1) is used.

Their acceptance probability follows directly from equation (4.7):

�
�
(k� a(k)) � (k�� a(k�)) � x� �2

a � �
2
e

�
� min

�
1�

p
�
k�� a(k�) � x� �2

a � �
2
e

�
p
�
k� a(k) � x� �2

a � �
2
e

�� �� �
Ratio of posteriors

J
�
k � k�

�
J
�
k� � k

�� �� �
Ratio of model

transition proposal
probabilities

q
�
a(k)

u � �2
a

�
q
�
a(k�)

u � �2
a

�� �� �
Ratio of

random vector
proposal

probabilities

�
(4.23)

Since the transformation of equation (4.21) does not involve a change in

scale, there is no Jacobian term. Also, as model transitions are proposed

from a symmetric random-walk distribution, the terms involving J(�) cancel:

�
�
(k� a(k)) � (k�� a(k�)) � x� �2

a � �
2
e

�
� min

�
1�

p
�
k�� a(k�) � x� �2

a � �
2
e

�
p
�
k� a(k) � x� �2

a � �
2
e

� q
�
a(k)

u � �2
a

�
q
�
a(k�)

u � �2
a

�
�

(4.24)
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Furthermore, the ratio of posteriors can be expressed in terms of the likeli-

hood (eq. 4.13) and priors (eq. 4.14 & 4.15) using Bayes’ theorem (eq. 2.3):

�
�
(k� a(k)) � (k�� a(k�)) � x� �2

a � �
2
e

�
� min

�
1�

p
�
x � k�� a(k�)� �2

e

�
p
�
x � k� a(k)� �2

e

� p
�
k�
�

p
�
k
� p
�
a(k�) � �2

a

�
p
�
a(k) � �2

a

� q
�
a(k)

u � �2
a

�
q
�
a(k�)

u � �2
a

�
�

(4.25)

where unnecessary conditioning has been dropped. Note the prior indepen-

dence of k and a(k)� �2
a . Since p(k) is uniform over all permissible models

(eq. 4.14), it cancels p(k�). Also, since p(a(k) � �2
a ) is simply i.i.d. Gaus-

sian (eq. 4.15), the priors for the common model terms cancel, leaving only

(for a birth move)

�
�
(k� a(k)) � (k�� a(k�)) � x� �2

a � �
2
e

�
� min

�
1�

p
�
x � k�� a(k�)� �2

e

�
p
�
x � k� a(k)� �2

e

� pa
�
a(k�)

u � �2
a

� q
�
a(k)

u � �2
a

�
q
�
a(k�)

u � �2
a

�
�

(4.26)

For the forward transition in a birth move, a(k�)
u is drawn from the prior

on au, i.e.

q
�
a(k�)

u � �2
a

�
� p

�
a(k�)

u � �2
a

�
(4.27)

whereas the reverse transition is deterministic, so a(k)
u is empty and q

�
a(k)

u

�
�

1. The prior and proposal terms thus cancel, simplifying the acceptance

probability to

�
�
(k� a(k)) � (k�� a(k�)) � x� �2

a � �
2
e

�
� min

�
1�

p
�
x � k�� a(k�)� �2

e

�
p
�
x � k� a(k)� �2

e

� � (4.28)

which applies for either a birth or death move.

4.4.2 Proposing new parameters from full conditionals

A more elaborate approach, which makes better use of analytic results avail-

able for the AR model, is to propose new model parameters from their

full conditional distributions. Due to the choice of a conjugate prior, the

full conditional is a multivariate Gaussian distribution, from which it is
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straightforward to sample.

With this proposal distribution, the birth move becomes

a(k�)
u �

Full conditional� �� �
p(a(k�)

u � x� k�� a(k)� �2
a � �

2
e ) (4.29)

a(k�)
�

	
a(k�)

f

a(k�)
u



�

	
a(k)

a(k�)
u



(4.30)

The death move remains the same (eq. 4.22).

With this partitioning, the AR process (eq. 4.10) can be rewritten as

e � x1 �X(k�)a(k�)
� x1 �X(k�)

f a(k�)
f �X(k�)

u a(k�)
u (4.31)

The Jacobian is again unity, so, from equation (4.24), the acceptance prob-

ability is

�
�
(k� a(k)) � (k�� a(k�)) � x� �2

a � �
2
e

�
� min

�
1�

p
�
k�� a(k�) � x� �2

a � �
2
e

�
p
�
k� a(k) � x� �2

a � �
2
e

� 1

p
�
a(k�)

u � k�� a(k�)
f � x� �2

a � �
2
e

�
�

(4.32)

Rather than simply drawing a value of a(k�)
u from the full conditional, then

evaluating this acceptance probability, we can use the “Candidate’s Iden-

tity”, which is a simple result from probability theory [20]:

p(k� � � x)
p(� � k� x)

� p(k � x) (4.33)

to simplify equation (4.32) to

�
�
k � k� � x� a(k)� �2

a � �
2
e

�
� min

�
1�

p
�
k� � x� a(k�)

f � �2
a � �

2
e

�
p
�
k � x� a(k)� �2

a � �
2
e

� � (4.34)

where a(k�)
f � a(k) (eq. 4.30). The acceptance probability is hence indepen-

dent of a(k�)
u , so a value need not be drawn unless the move is accepted.

The expression in the numerator, from which a(k�)
u has been analytically
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marginalised, is derived in �B.1 as

p(k� � x� a(k�)
f � �2

a � �
2
e ) (4.35)

�

�
p(k�� a(k�)

u � x� a(k�)
f � �2

a � �
2
e ) da(k�)

u (4.36)

�

"
�C

ca(k� )
u
���

2	�e

�ne
"
�C

pa(k�)
u
�
exp

�
� 1

2�2
e

�
eT

f ef � 1
�2

e
eT

f X(k�)
u C

ca(k�)
u

X(k�)T
u ef

��
(4.37)

where

C
ca(k� )

u
�
�

1
�2

e
X(k�)T

u X(k�)
u � C�1

pa(k�)
u

��1
(4.38)

�
ca(k� )

u
�

1
�2

e
C

ca(k� )
u

X(k�)T
u ef (4.39)

ef � x1 �X(k�)
f a(k�)

f (4.40)

such that ef is the excitation signal corresponding to a model containing

only the terms associated with the parameters a(k�)
f .

The acceptance probability (eq. 4.34) then becomes

�
�
k � k� � x� a(k)� �2

a � �
2
e

�
� min

�
1�

#$$% �C
ca(k�)

u
�

�C
pa(k�)

u
� exp

�
1

2�4
e

eT
f X(k�)

u C
ca(k�)

u
X(k�)T

u ef

��
(4.41)

4.4.3 Proposing whole parameter vector

An alternative approach is to ignore the nested nature of the model and pro-

pose a complete new parameter vector, discarding the current value. This

should allow better mixing, as the chain can move between any two models

in a single step.

With this proposal distribution, a(k) is not used, so birth and death moves

are treated identically:

a(k�) � p(a(k�) � x� k�� �2
a � �

2
e ) (4.42)
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The acceptance probability follows from equation (4.24):

�
�
(k� a(k)) � (k�� a(k�)) � x� �2

a � �
2
e

�
� min

�
1�

p
�
k�� a(k�) � x� �2

a � �
2
e

�
p
�
k� a(k) � x� �2

a � �
2
e

� p
�
a(k) � x� k� �2

a � �
2
e

�
p
�
a(k�) � x� k�� �2

a � �
2
e

�� (4.43)

As in �4.4.2, there is no need to draw a value of a(k�) unless the move is

accepted, as it cancels from the expression for the acceptance probabil-

ity, leaving

�
�
k � k� � x� �2

a � �
2
e

�
� min

�
1�

p
�
k� � x� �2

a � �
2
e

�
p
�
k � x� �2

a � �
2
e

� � (4.44)

which is independent of both a(k) and a(k�). The derivation follows the same

lines as that in �B.1 and �4.4.2, but with the partitioning changed such that

(�)u contains the whole parameter vector and (�)f is empty, and results in

Cca(k�) �
�

1
�2

e
X(k�)TX(k�)

� C�1
pa(k�)

��1 (4.45)

�ca(k�) �
1
�2

e
Cca(k�)X(k�)Tx1 (4.46)

and

�
�
k � k� � x� �2

a � �
2
e

�
� min

�
1�

&
�Cca(k�) �
�Cca(k) �

�Cpa(k)�
�Cpa(k�) �

exp
�

1
2�

T
ca(k�)C

�1
ca(k�)�ca(k�)

�
exp

�
1
2�

T
ca(k)C

�1
ca(k)�ca(k)

�
�

(4.47)

Note that the same acceptance probability could be obtained by marginal-

ising a(k) directly before designing the model moves.

It is possible to marginalise �2
e as well, by reparameterising such that

�2
a � � �2

e (see e.g. [7]). Whilst this is mathematically convenient, it is not

physically plausible—we expect �2
a and �2

e to be independent since, for ex-

ample, scaling the signal will vary �2
e but not �2

a .
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4.5 Implementation

4.5.1 Other sampling steps

4.5.1.1 Sampling the AR parameter vector

We can sample a(k) directly from its full conditional distribution in a Gibbs

move, for which the acceptance probability is always one (�3.3.1.3):

a(k) � p(a(k) � x� k� �2
a � �

2
e ) (4.48)

� N
�
a(k) � �ca(k) �Cca(k)

�
(4.49)

where �ca(k) and Cca(k) are defined in a similar manner to equations (4.45)

& (4.46). This is equivalent to a model move of �4.4.3 in which k� � k.

This step should be performed in algorithms using the moves of �4.4.1 and

�4.4.2 in order to allow the lower order AR parameters to be updated.

4.5.1.2 Sampling the noise variance

We can also sample �2
e using a Gibbs move. To do this, we require the full

conditional posterior distribution:

p(�2
e � x� k� a(k)� �2

a ) �
Likelihood� �� �

p(x � k� a(k)� �2
a � �

2
e )

Prior� �� �
p(�2

e ) (4.50)

� N
�
eTe � 0� �2

e Ine

�
IG
�
�2

e � �e� �e
�

(4.51)

� (2	�2
e )�

ne
2 exp

�� 1
2�2

e
eTe
�
��2(�e�1)

e exp
�� �e

�2
e

�
(4.52)

� ��(ne�2�e�2)
e exp

���e�
1
2 eTe

�2
e

�
(4.53)

� IG
�
�2

e � �se� �se

�
(4.54)

where

�se � �e �
1
2ne and �se � �e �

1
2eTe (4.55)

We can sample from this inverse Gamma density directly (see e.g. [155]).
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4.5.1.3 Sampling the parameter variance

Similarly, we can use a Gibbs move to sample the hyperparameter �2
a :

p(�2
a � x� k� a(k)� �2

e ) � p(�2
a � a(k)) (4.56)

� p(a(k) � �2
a ) p(�2

a ) (4.57)

� N
�
a(k) � 0� �2

a Ik

�
IG
�
�2

a � �a� �a

�
(4.58)

� IG
�
�2

a � �sa� �sa
�

(4.59)

where

�sa � �a �
1
2k and �sa � �a �

1
2a(k)Ta(k) (4.60)

4.5.1.4 Proposal distribution for changes in model order

All three types of reversible-jump move require a new model order, k�, to

be proposed. To ensure good mixing, we want most proposed jumps to

be small, but occasional large ones to occur too. We choose a discretised

Laplacian density, centred on k:

J(k� � k) �
��
�exp(�� �k� � k�) if k� �� k

0 if k� � k

This distribution has the advantage of being symmetric, so that the J(k �
k�)�J(k� � k) part of the acceptance probability is simply unity if k and k� are

both within the range 0 � � �kmax and zero otherwise.

Large jumps can be facilitated by thickening the tails of the proposal

distribution by using a mixture of a uniform and a Laplacian distribution.

J(k � k) can be set to zero, as such a move would have no effect in

the schemes of �4.4.1 and �4.4.2 and be equivalent to the Gibbs move of

�4.5.1.1 in the scheme of �4.4.3.

4.5.2 Algorithm

Algorithm 4.1 can be used with all three types of reversible-jump move—

�(�) is taken from equation (4.28), (4.41) or (4.47) as required. Since the
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Algorithm 4.1. Reversible-jump sampler for AR model: for clarity, iteration
numbers are omitted.

Choose initial values
for i = 	1 � � � number of iterations


k� � J(k� � k)
a(k�)

u � p(a(k�)
u � �2

a ) — for moves of �4.4.1 only
z � U(0� 1)
if z � �(k � k� � x� a(k)� a(k�)� �2

a � �
2
e )

k � k�

end if
a(k) � p(a(k) � x� k� �2

a � �
2
e )

�2
a � p(�2

a � a(k))
�2

e � p(�2
e � x� k� a(k))

end for

whole of a(k) is sampled from its full conditional immediately after each

reversible-jump move, there is no need to sample a(k)
u as part of the move,

as the value would be discarded. Sensible initial values for the parameters

can be drawn from their prior distributions.

4.6 Results

4.6.1 Synthetic AR data

The rates of convergence of the three methods were compared using sig-

nals generated from a synthetic AR(8) process with poles at 0�85 e�j�
120
180 ,

0�75 e�j�
75

180 , 0�75 e�j�
45

180 and 0�8 e�j�
15
180 .

For each algorithm, an ensemble of Markov chains was formed by run-

ning the sampler 200 times, each time using 4900 samples from a different

realisation of the signal and drawing initial values for k, a(k), �2
a and �2

e

from their prior distributions. The hyperparameters were set to kmax � 20,

�a � �a � �e � �e � 10�4 and � � 0�5. Such parallel runs are not necessary

in normal use, but are used here to allow estimation across an ensemble of

independent realisations of each Markov chain; usually estimation would

be performed along one chain.

Figure 4.1 shows, for each of the algorithms, at each iteration, a
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Figure 4.1. Comparison of reversible-jump moves: evolution of model order
histogram—darkness represents frequency of occurrence across the ensem-
ble of 200 runs; the scale is included in Figure 4.2.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rt

io
n

ch
oo

si
ng

co
rr

ec
tm

od
el

or
de

r

Iteration

Figure 4.2. Proportion of ensemble choosing correct order model: using
proposals of �4.4.1 (dotted), �4.4.2 (dashed), �4.4.3 (solid), together with
scale for Figure 4.1.



4.6. Results 61

histogram of the model order across the ensemble. To start with, the his-

togram is flat, as the initial model order is sampled from the bounded uni-

form prior. Towards the end of the runs, a significant proportion of the

chains are producing models of the correct order. The full parameter vec-

tor proposal method (�4.4.3) converges fastest, followed by the method of

�4.4.2, followed by that of �4.4.1. Figure 4.2 shows, for each method, the

proportion of the runs which choose the correct model order at each it-

eration. The straightforward method (�4.4.1) performs badly because its

acceptance rate is much lower than that of the methods which use the full

conditional distributions.

As it converges much faster, we will use the full parameter vector pro-

posal method (�4.4.3) for all further work. For the same data sets, the

BIC model selection criterion (�2.1.6.2) consistently suggests an eighth or-

der model and the AIC varies between eighth and ninth order models.

4.6.2 Audio data

To compare this approach to model selection with more conventional tech-

niques, the full parameter vector proposal algorithm (�4.4.3) was used to fit

an AR model to a block of 1000 samples from a 44.1 kHz sampled vocal

recording, shown in Figure 4.3

The sampler was run for 10 000 iterations, with initial values sampled

from the priors. The maximum model order, kmax, was set to 120, and the

hyperparameters as in the previous experiment. The model order change

proposal distribution (�4.5.1.4) was a mixture of a Laplacian with � � 0�5

and a uniform distribution over the range (�kmax� kmax), such that each dis-

tribution accounted for about half the proposals.

Figure 4.4 shows the sampler output. The initial model order, sampled

from the prior, was 112. It can be seen that the sampler very quickly con-

verges to a fairly narrow posterior distribution. Multiple runs, from differ-

ent starting points, all converged within 100 iterations to the same region.

Monte Carlo estimates of the marginal posterior model order probability

distribution, p(k � x), are shown in Figure 4.5, along with the AIC and

BIC model selection criteria (see �2.1.6.2). The first estimate is based on

all iterations except the first 100, which were discarded as burn-in due to

the atypical initial values. The second estimate is based on only the first 100

post-burn-in iterations. It can be seen that they agree closely with each other,



62 Model order uncertainty

0 100 200 300 400 500 600 700 800 900 1000
−2000

−1000

0

1000

2000

S
am

pl
e

va
lu

e

Sample number

Figure 4.3. Audio signal used for the experiment of �4.6.2.
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as they did with estimates from separate runs. The maximum a posteriori

estimate of k is 32, but 33 and 31 also have significant probability. The BIC

criterion has a local minimum at 32, but its global minimum is at 40, both

of which are reasonable for audio signals. The AIC, which is known to tend

to overmodel [112], suggests a model of order 90.

4.7 Application to noise reduction

We now incorporate our new reversible-jump moves into an existing model-

based noise reduction algorithm which has previously been used only with

fixed model orders.

The removal of white noise, which is perceived as hiss, from audio

recordings is a heavily researched area, but model-based methods are not

yet widely used.
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4.7.1 Frequency domain methods

Most noise reduction algorithms work in the frequency domain (see e.g. [5]).

The signal is split into blocks within which the frequency components of the

signal can be assumed to remain constant; for a sample rate of 44.1 kHz,

blocks of length 1024 samples are sufficiently short for this to be reasonable

[27]. Each block from the signal is transformed, usually using a windowed

Fast Fourier Transform (FFT), to the frequency domain. The Fourier co-

efficients are manipulated in some manner, then the block is inverse trans-

formed back to the time domain. To ensure continuity in the reconstructed

signal, overlapping blocks are used, windowed such that they have zero

amplitude at the beginning and end. The variations in gain due to the win-

dowing in the FFT and the blocking can be removed by multiplying by a

gain compensation window [87].

In the frequency domain, the signal’s energy will tend to be concentrated

in just a few of the FFT’s bins, whereas white noise will be spread evenly

across all the bins. Hence applying an attenuation rule, which scales up the

high amplitude values and scales down the low ones, should increase the

signal to noise ratio. A wide range of attenuation rules are used in practice

(see [87, �6.1] for a brief overview), most of which are nonlinear, with a

threshold at the level of the estimated noise floor.

4.7.2 Musical noise

Musical noise is a common artefact of noise reduction processes. It occurs

due to the difficulty in distinguishing between features of a signal which are

important and those which are merely components of the random noise. In

FFT-based noise reduction, when a frequency bin which does not contain a

significant proportion of signal randomly (due to noise) attains a amplitude

above the threshold, and hence is not attenuated, it sounds like a short

burst of a musical tone in the restored signal. Increasing the threshold will

prevent this, but at the cost of further distorting the signal by attenuating

perceptually significant components.

Musical noise components differ from block to block, whereas signal

components tend to persist for several blocks. Hence a simple measure to

reduce musical noise is to median filter the proposed levels of attenuation
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Figure 4.6. Modelling of noisy audio: y is the observed noisy signal, x is the
noise-free audio signal we wish to estimate, v is the additive white Gaussian
noise component, and e is the excitation process.

for adjacent blocks—a component which appears in only a single block will

then have no effect on the applied attenuation.

4.7.3 Model formulation

As shown in Figure 4.6, we model the noisy signal as the sum of an AR

process, representing the noise-free audio, and a white Gaussian noise pro-

cess (see e.g. [88, 124, 165]). This can be represented in state-space form

(see �2.3.3.10) as

xt � a(k)Tx�t�k���t�1� � et et � N
�
et � 0� �2

e

�
(4.61)

yt � xt � vt vt � N
�
vt � 0� �2

v

�
(4.62)

where equation (4.61) is the state equation and equation (4.62) is the obser-

vation equation and x�i���j� means the ith to jth elements from x.

We assume that the noise variance, �2
v , is known. In practical FFT-based

noise reduction, it is usually either adjusted by the user, to optimise the

trade-off between perceived signal distortion and musical noise, or estimated

from a part of the recording which contains only noise.

4.7.4 Simulation smoother

The simulation smoother (see e.g. [30, 46, 57]) is a method which allows

samples to be drawn efficiently from the posterior distribution of the states

in a state-space model. In this model, the sequence of states, x, defined in

equation (4.61) form the desired audio signal.
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The task of jointly sampling all of x � p(x � y� k� �2
a � �

2
v ) is broken down

through recursion into two passes through the signal. The first, the forward

pass, uses a Kalman filter to estimate the prediction and update distribu-

tions, p(xt�1 � y�1���t�) and p(xt�1 � y�1���t�1�). The reverse pass then draws

samples xt � p(xt � x�t�1���nx�� y), starting at the end of the signal. Since, by

the probability chain rule,

p(x � y) �
nx�

t�1

p(xt � x�t�1���nx�� y) (4.63)

this is equivalent to jointly sampling all of x as required. The simulation

smoothing procedure used here is a direct implementation of that described

by de Jong & Shephard [46].

4.7.5 Blocking

As with frequency-domain methods (�4.7.1), the AR model can only be as-

sumed to remain stationary over relatively short blocks. There is no need,

however, to use overlapping blocks to ensure continuity across block bound-

aries: this can be done by using the final k values from the previous block

as the initial values, x0, on which probability distributions for the current

block are conditioned. Thus we perform joint processing of the whole sig-

nal. This contrasts with the approach of Lim & Oppenheim [125], in which

each block is processed independently.

4.7.6 Algorithm

Algorithm 4.2 shows the algorithm used for the noise reduction experi-

ments. Since the simulation smoother step requires much more computation

than all the other sampling steps, several reversible-jump moves are pro-

posed each iteration. To avoid clumsy notation, the algorithm refers only to

one block of data; in practice, each block is sampled in turn in each iteration.

4.7.7 Experiments & discussion

The signal winner (Track 1 on the accompanying CD—see Appendix C)

is a five second extract from a commercial vocal music recording. White

Gaussian noise was added at a level 28 dB below the r.m.s. level of the

whole signal. Track 2 is the resulting noisy signal.
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Algorithm 4.2. Noise reduction for an AR signal of unknown model order:
using the simulation smoother and reversible-jump model selection

Choose initial values
for i = 	1 � � � number of iterations


x � p(x � y� k� a(k)� �2
e � �

2
v )

for r = 	1 � � � number of reversible-jump moves per iteration

k� � J(k� � k)
z � U(0� 1)
if z � �(k � k� � x� �2

a � �
2
e )

k � k�

end if
a(k) � p(a(k) � x� k� �2

a � �
2
e )

�2
a � p(�2

a � a(k))
�2

e � p(�2
e � x� k� a(k))

end for
end for

As a benchmark, the signal was processed by using the same simulation

smoother, but with a fixed AR model order of 30. The algorithm was run

for 100 iterations, and a Monte Carlo estimate of the signal (Track 3) pro-

duced from the final fifty. The noise level was reduced by an average of

3.4 dB (r.m.s.). The reduction in the noise level is audible, but there are

disturbing short-duration tones in the quiet parts of the signal, similar to

musical noise. For comparison, Track 5 is the same noisy signal processed

by a simple FFT-based spectral subtraction algorithm. Noise is reduced by

2.4 dB (r.m.s.), and the musical noise artefacts are of similar intrusiveness.

The same signal was then processed using Algorithm 4.2 for 100 iter-

ations, and the signal again estimated from the final 50 iterations (Track

4). Figure 4.7 shows the signal along with estimates of the posterior dis-

tributions of the model order and excitation variance in each block and

the noise levels before and after restoration. Although the average level

of noise reduction is again 3.4 dB (r.m.s.), similar to that obtained in the

fixed model order experiment, no musical noise artefacts can be heard in

the restored signal.

It seems likely that the musical noise artefacts in Track 3 occur when the

correct model order is smaller than the fixed model order, so some aspects

of the noise are incorporated into the model. Incorporating reversible-jump

model order selection prevents this.
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Figure 4.7. Noise reduction in winner: (from top) signal; estimated posterior
model order distribution; estimated posterior excitation standard deviation
distribution; noise level before (dotted) and after (solid) restoration.
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deviation distribution.
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It is not perfect, however: Figure 4.8 shows estimates of the model order

and excitation variance produced by using the same reversible-jump algo-

rithm (without the simulation smoothing step) on the clean signal. For ex-

ample, in the reverberation tail around block 40, estimates from the clean

signal suggest a model order around 13, whereas Figure 4.7 suggests orders

around 2. This is likely to be because the structure of the quiet signal has

been completely swamped by noise. Later in the signal (blocks 100–140),

the estimates from the noisy signal repeatedly changes between high values,

agreeing with Figure 4.8, and underestimates. This switching behaviour may

be the cause of the fluttering noises which are occasionally audible in the re-

stored signal. This could possibly be overcome by introducing, through the

prior on k, Markovian dependence (�3.2.2) between the model orders in

adjacent blocks, with significant probability assigned to smaller changes in

model order. This approach can be extended to the priors for the parameter

values and excitation variance (see e.g. [54, 165]).

4.8 Discussion

In this chapter, we have discussed approaches to AR model order uncer-

tainty using reversible-jump MCMC methods. We then developed new

reversible-jump techniques using the natural parameterisation of the AR

model, and saw how this approach allows convergence to be greatly speeded

by exploiting the analytic properties of the AR model. Proposing full param-

eter vectors might be expected to be slower, as it does not take advantage of

the nested structure of the model, but was instead found to give much better

mixing. The MCMC approach readily allows model mixing in applications

where the model order is uncertain.

Using the example of model-based audio noise reduction, we have seen

how incorporating model order selection into an established MCMC algo-

rithm can improve its performance by avoiding the artefacts which result

from overmodelling.
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Subset selection in
nonlinear time series models 5

5.1 Motivation

In Chapter 4, we addressed the situation in which a particular form is as-

sumed for a model, but the number of terms to include is an unknown.

The approach developed in Chapter 4 is highly suitable for linear models, in

which model terms have a natural ordering, with higher order terms tending

to be less significant than those of lower orders.

This is not always the case: particularly in nonlinear models, even if the

kth term is highly significant, the preceding terms may not be. Including all

these preceding terms could lead to overmodelling.

This problem can become extreme in models whose terms derive from

Volterra expansions. If a fifth degree term involving a lag of four samples

is required to model a system, then a complete expansion up to this term

would contain some 3000 terms.1 It has been found in various applications

[21, 39] that of the order of 10 terms are sufficient to model even highly

nonlinear systems. As discussed in Chapter 2, including a large number

of redundant terms will lead to overmodelling, as a model with so many

parameters is capable of reproducing features of a limited dataset which

should be attributed to noise.

Hence there is a need to perform model selection in which each possi-

ble subset of the available model terms is a candidate model. A subset can

be represented by a vector of binary indicators, �, where each element cor-

responds to one model term, and only those terms for which �i � 1 are

1The number of terms in a triangularised Volterra expansion of degree p and maximum lag
k is [143]

Nterms �
(p� k)!

p! k!
(5.1)

71
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included in the model. The maximum a posteriori subset model is then2

�̂MAP � arg max
�

�
p(� � y)

�
(5.2)

The task of subset selection in this nonlinear model is similar to that of

variable selection in standard regression modelling.

5.2 Deterministic search methods

Maximising the posterior probability in equation (5.2) is essentially a multi-

variate optimisation problem, which is a widely studied field (see e.g. [56]).

What is different here is that all the variables are binary. This renders con-

cepts such as steepest descent of little use.

There are a number of different approaches. Ideally, we would like

to find the one subset which forms the optimal model, according to some

model selection criterion. This proves to require far too much computation

for large models, so we go on to examine a range of suboptimal search

techniques.

5.2.1 Exhaustive search

The most straightforward optimal subset selection method is to evaluate the

posterior model probability, p(� � y), or some other model selection crite-

rion (�2.1.6.2) for each of the possible subsets, then pick the one which

scores best.

For a model with P candidate terms, there are 2P possible combinations.

With increasing P, this rapidly becomes impractical: for the 3000 term ex-

ample from the previous example, there are some 10900 combinations. This

is a very large number.

Fast matrix updating schemes (see e.g. [68]) and careful ordering of the

models in the search (e.g. Gray code ordering, such that only one term

changes at each step [155]) can greatly reduce the computation required

for an exhaustive search. This allows searches of spaces a few orders of

magnitude larger than practicable when using a naı̈ve approach.

2In this chapter, we denote the data as y, for reasons which will become apparent in Chap-
ter 6.
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A possible simplification is to restrict the search to subsets containing,

say, 10 or fewer terms. This greatly reduces the search space, to 1028 com-

binations. To put this in context, this space is similar to that which would

have to be searched to crack a 94 bit cryptographic key by brute force,

which is well beyond the capabilities of current and foreseeable conven-

tional computers.

If we accept that it is too difficult to find the optimal subset, and that

we are just looking for an acceptably good model, then the search space can

be further reduced by removing models which are similar to those already

included in the search space. For example, only even numbered lags could

be considered, or only subsets which differ in more than one term. This

coarse-grid search could be followed by a fine-grid search to find whether

any of the neighbours of the chosen model outperform it [141, �5.5.4].

Even with these rather arbitrary restrictions, the search space is often too

large for an exhaustive search to be feasible. The coarseness of the grid is

limited by the need for the posterior model probability surface to be smooth

on the scale of the coarse grid.

5.2.2 Tree-searching algorithms

Tree searches or branch and bound methods (see e.g. [101]), can be used to

find the optimum subset of each size (1 � � �P), in terms of residual sum of

squares (RSS), without testing all possible subsets.

As shown in Figure 5.1, a tree is built, rooted on the full model, with

recursive branches, each of which represents exclusion of one term. The

branching rules are such that each subset can appear only once. Since the

RSS can only increase as a branch is followed to smaller models, branches

can be skipped if their RSS has already been beaten by subsets of all the

sizes they would contain.

Such a tree search can be used to draw up a shortlist of subsets, one of

each size. Since model selection criteria such as the AIC and BIC (�2.1.6.2)

are, for models with a given number of parameters, monotonic functions

of the RSS, the chosen criterion need only be applied to the shortlist to

find the optimum model.

Furnival & Wilson [58] describe a highly optimised algorithm which

reuses expensive calculations, such as matrix inversions, wherever possible.

The number of subsets for which we need to estimate the parameters
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Figure 5.1. Inverse tree for subset selection from four candidate terms: digits
represent model terms included at that node. (Adapted from [58].)

and evaluate the RSS depends on the search algorithm and where the op-

timum subsets of each size happen to fall within the tree. In the worst

case, the full tree, with 2P nodes, would need to be evaluated. In the best

case, as few as 1
2P2 �

1
2P � 1 evaluations might be needed. The number of

calculations required in a typical search is approximately proportional to�
2

P
[58]. Clearly, for the relatively large values of P we are considering,

this is impractical.

5.2.3 Stepwise algorithms

Forward selection and backward elimination are much faster (O(P2)) subop-

timal search methods. Rather than searching all possible models, the former

starts with a very small model and repeatedly finds the best single term to

incorporate into it to improve its performance (as measured by any of the

techniques in �2.1.6), until none of the remaining parameters will give a

significant improvement. The latter method starts with a full model, and

repeatedly selects terms to remove.

These methods cannot recover once they have chosen an inappropriate

term to include or exclude. Pope & Rayner [152] combine these approaches

to give the greatest stepwise improvement (GSI) algorithm, which considers

the effect on the Bayesian evidence of including or excluding each candidate
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term, and chooses the inclusion or exclusion which gives the greatest im-

provement. When none of these choices leads to an improvement, it stops.

The problem with stepwise methods is that it is easy for them to become

stuck in local minima. For example, where several candidate terms fulfil

a similar role, once one which works adequately has been included, it will

not be dropped. However, its presence will make the other similar terms,

which may be better, seem redundant, so they will not be tried. Similarly,

if a group of terms only functions well when considered together (common

in the case of Taylor expansions), then they will not be chosen when the

algorithm considers them one by one. Stark [176, �5.2] calls these problems

inclusivism and exclusivism. The former could perhaps be overcome, at the

expense of speed, by incorporating O(P2) “add one and remove one” steps

into the GSI algorithm. The latter could be addressed by allowing “add the

best q new terms” steps, but these would be expensive: O(Pq).

5.3 Stochastic search methods

We have seen that optimal methods become impractical when the search

space is large. We then considered suboptimal search methods, and observed

that they tend to get stuck at local minima, as they only allow moves which

immediately improve the model.

This can be avoided by introducing an element of randomness, so that

it is possible for the algorithm to move past the energy barrier3 separating

a local minimum from the global one.

5.3.1 Genetic algorithms

Genetic algorithms, also known as evolutionary computation, are a further,

non-MCMC, class of algorithms for searching the model space. Introduced

in the 1970s [102], and recently applied in fields as diverse as timetabling

and DNA sequence alignment [100], they are based on an analogy with

biological inheritance and Darwinian evolution.

From a population of randomly-generated candidate models, a new

3This term is used as an analogy to activation energy barriers in exothermic chemical reac-
tions: in order to get to a lower energy (higher probability) state, it may be necessary to
pass through a higher energy (lower probability) one.
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generation is bred. The more fit a candidate model, the more likely it is

to contribute to the next generation. These contributions can be through

simple duplication, mutated copies of the model, in which some random

changes are made, or through crossover, in which a new model is gener-

ated by randomly intermixing terms from a pair of models. As the process

is repeated, the average fitness of each successive generation will tend to

increase.

There is great scope for flexibility in choosing the fitness measure, the

propagation rules, the population size, and the mutation and crossover op-

erators. If the posterior model probability is used to measure fitness, genetic

algorithms can be used for Bayesian model selection.

As the evolution of the population in a genetic algorithm is a Markov

process, i.e. it depends only on the last state, genetic algorithms can be

modelled as Markov chains (see e.g. [167]).

5.3.2 Previous MCMC approaches

Taking an MCMC approach to the subset selection process not only intro-

duces randomness, allowing local minima to be escaped, but also has the ad-

vantage of allowing model mixing (�2.1.7) and the incorporation of model

selection into a larger MCMC framework for solving complex problems.

One way to do this is to construct a Markov chain which moves around

the model space by sampling the indicator variables, 	�i
, as well as the

other parameters, to produce a sequence of states �(1)��(2)� � � � . Once the

sequence has converged, it produces dependent samples from the posterior

p(� � y). The values of � which occur with highest frequency correspond to

the most promising sets of terms to include.

George & McCulloch [66, �3] argue that if we are only interested in

the highest probability subsets, rather than the evaluation of the full pos-

terior, a run of much shorter than 2P iterations should suffice—those areas

which have not been visited are of low probability and hence not of inter-

est. This is not an entirely convincing argument, as if we have not visited

parts of the posterior, we know nothing about them. There may, for exam-

ple, be a sharp peak in probability entirely contained within the unvisited

area. Nevertheless, for at least mildly well behaved posteriors, the argu-

ment seems reasonable.

There are two basic ways in which the binary indicators, 	�i
, can be
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incorporated into the model:

� A fixed model can be used, incorporating all candidate terms, with hi-

erarchical mixture priors on the parameter priors, which disable terms

by forcing their parameters to small values. The indicators can deter-

mine which element of the mixture applies to a term.

� A nested model can be used, with conventional parameter priors. The

indicators can then act directly, removing unwanted terms from the

model completely.

We now consider previous applications of these two approaches. Godsill

[81] presents a generalised model selection framework, of which all of these

approaches can be considered to be special cases.

5.3.2.1 Indicators acting on prior

George & McCulloch [66, 67, 68] develop a technique they call stochas-

tic search variable selection (SSVS), first for normal linear regression and

then extended to generalised linear regression problems. The prior on each

parameter bi is conditional on the associated indicator �i:

p(bi � �i) � (1� �i) N(0� �2
c ) � �i N(0� �2

b ) (5.3)

where �2
c is very small, and �2

b is the required variance for the prior on

bi. When a term’s indicator, �i, equals zero, the corresponding parameter

bi will be sampled from the posterior corresponding to the use of a very

narrow prior (of variance �2
c ), and hence will tend to be sufficiently close

to zero that it does not affect the estimates of the rest of the parameters.

But it must also be broad enough for there to be the possibility that the

parameter will again be selected, otherwise we have an absorbing state in

the Markov chain, which violates convergence conditions [182], a difficulty

which is addressed in different ways in the following sections.

Omitting iteration numbers, their sampling scheme is as follows:

b � p(b � y��� �) (5.4)

� � p(� � y��� b) (5.5)

� � p(� � y� b� �) (5.6)
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where � contains any other parameters common to all subsets; in their ex-

ample this is just the noise variance. They sample b as a block and the binary

vector � component by component in random order:

�i � p(�i � y� b� �) (5.7)

In their example, this probability mass function takes a simple form. Stark

[176, �5.4.2] has found sampling the indicator variables in random order to

be better than using a fixed sequence.

For problems using conjugate priors, Geweke [71] avoids the compro-

mise in choosing �2
c by sampling each indicator jointly with its associated

parameter:

(�i� bi) � p(�i� bi � y��[�i]� b[�i]� �) (5.8)

With this sampling scheme, the narrow prior used for disabled terms can be

arbitrarily narrow—or even a Æ-function at bi � 0—as, once excluded, the

term can still be reincluded by this joint move. He also allows for joint

priors, p(b).

Godsill & Rayner [86, 88] use a similar approach for outlier detection

in noise reduction, in which separate indicators for impulsive noise and ex-

citation outliers are associated with each sample.

5.3.2.2 Indicators acting on model

In the approach of Kuo & Mallick [119, 120], terms are completely re-

moved from the model when their indicators are zero. The values of pa-

rameters associated with disabled terms have no effect on the model, so

they do not appear in the likelihood. Hence the full conditional posterior

distribution from which they are sampled is the same as their prior dis-

tribution (�5.5.1.3).

In fact, they can be treated in the same manner as the parameters of

unselected models in the composite model space of Carlin & Chib [28] (see

�4.2.1), and be drawn from an arbitrary pseudo-prior distribution [81].

Kuo & Mallick [119, 120] sample the parameters as a block and the
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indicators one-by-one, conditional on the parameters:

b � p(b � y��� �) (5.9)

�i � p(�i � y��[�i]� b� �) (5.10)

If conjugate priors are used, then joint moves can be made instead [121]:

(�i� bi) � p(�i� bi � y��[�i]� b[�i]� �) (5.11)

The parameter values associated with disabled terms then have no effect

on the sampling of the indicators, and hence need not be sampled at all—

no pseudo-prior distribution need even be chosen. This approach is then

exactly equivalent to that of [71].

5.3.3 Subset AR models

The literature we have reviewed above is all concerned with variable selec-

tion for linear regression modelling. There has also been some work on

subset selection for linear AR models:

� Chen [33] directly applies the SSVS approach (�5.3.2.1) to subset lin-

ear AR models.

� Barnett, Kohn & Sheather [12] use a sampling scheme similar to that

of Geweke [71], but reparameterise the model in terms of partial au-

tocorrelation coefficients in order to enforce stability. This reparame-

terisation is not applicable to NAR models.

5.4 Subset selection for Volterra NAR models

We now introduce the Volterra polynomial NAR model for which MCMC

sampling schemes for subset selection will be developed in �5.5.

5.4.1 Nonlinear AR model

Using the concepts discussed in �2.3.3, the AR model can be generalised

by replacing the weighted sum of past output values with an arbitrary
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function [37]:

yt � et � f (yt�1� yt�2� � � � � yt��b
) (5.12)

where 	yt
 is the signal, 	et
 is i.i.d. Gaussian excitation with variance �2
e ,

and �b is the maximum lag of the NAR model.

The discrete-time Volterra polynomial expansion [166], a “with mem-

ory” extension of the Taylor series, allows the approximation of a broad

range of nonlinearities as a simple sum of nonlinear terms (see �2.3.2). The

Volterra expansion can be used to approximate the nonlinear function in

equation (5.12) by expanding the state space to include a Volterra expan-

sion of past output values:

yt � et �

�b�
i�1

i�
j�1

b(i�j) yt�i yt�j �

�b�
i�1

i�
j�1

j�
k�1

b(i�j�k) yt�i yt�j yt�k

� higher degree terms (5.13)

where 	b(i�j)� b(i�j�k)� � � � 
 are the parameters of the NAR model. To avoid

duplication of equivalent polynomial terms, this expansion is in triangu-

lar form [143].

5.4.2 Subset & matrix-vector representation

For simplicity, we concatenate the nonlinear parameters of all degrees into

a single vector of length nb,

b �

'
b(1�1) b(1�2) � � � b(i�j�k) � � � b(�b��b��b�			�b)

(T
(5.14)

As discussed in �5.1, a similar vector of binary indicators, �, is used to

enable and disable terms: if �i � 1 then the term with parameter bi, i.e. the

ith element in the vector b, is included in the model; otherwise the term is

excluded. This use of indicators corresponds to that used by Kuo & Mallick

[119] for variable selection (see �5.3.2.2), but was developed independently.

We can extend this to express equation (5.13) in a fully matrix-vector

form:

e � y1 � Y(b Æ �) (5.15)
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where Æ denotes the Hadamard (elementwise) product, y1 omits the first �b

terms of y, and Y is a matrix in which row t � �b contains the predictors

relating to yt, i.e. the Volterra expansion of 	yt��b
� � � yt�1
, with the terms

in the order that they appear in b. The analogous equation for linear AR

models (eq. 2.27) is very similar, but X has a much simpler structure than Y.

5.4.3 Likelihood

Since the excitation is Gaussian, the approximate likelihood for y can also

be expressed as a multivariate Gaussian:

p(y � �� b�� �2
e ) � p(y � y0��� b�� �2

e ) (5.16)

� N
�
y1 � Y�b� � 0� �2

e Ine

�
(5.17)

where y0 is the first �b elements of y and the notation (�)� denotes a parti-

tion containing only elements corresponding to ones in �, such that Y�b� �

Y(b Æ �).

5.4.4 Priors

For the excitation variance, �2
e , we use an inverse Gamma prior, as in �4.3.2.

For the NAR indicators, we use a simple Bernoulli prior:

p(�) �
nb�

i�1

�
��i � (1� �)(1� �i)

�
(5.18)

where the prior probability of inclusion, �, is set by the experimenter. Typ-

ical values used have been in the range 0�1 � � � 0�5. Results are not

very sensitive to this hyperparameter unless extreme values are used. It is

straightforward to use a more informative prior, such as one with different

prior probabilities for each term or with dependence between terms, should

such knowledge be available.

Independent Gaussian priors are used for the NAR parameters. We ex-

pect a priori that the values of the NAR parameters of different degrees

will be of different magnitudes, so we partition the parameter vector by de-

gree. For the parameters associated with terms of degree m, we use the
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prior distribution

p(b
m� � �2
b ) � N

�
b
m� � 0� �2

b
s�m�

Inb�m�

�
(5.19)

The factor s
m� � E(�ym
t �) scales the prior distribution to have the same ef-

fect on parameters from different degrees. This prior can also be treated

as a zero-mean multivariate Gaussian with an appropriate diagonal covari-

ance matrix, Cpb. The hyperparameter, �2
b , is given an inverse Gamma

prior, which is again conjugate. Should prior knowledge justify it, any arbi-

trary multivariate Gaussian prior could be used instead, without any major

changes to the sampling schemes.

5.4.5 Problem formulation

In a stand-alone model selection problem, we want to find the value of �

which maximises the marginal posterior distribution,

p(� � y) �
�
� � �
�

b���2
b ��

2
e

p(� � y� b�� �2
b � �

2
e ) p(b� � �2

b ) p(�2
b ) p(�2

e ) db� d�2
b d�2

e

(5.20)

If our ultimate aim is Bayesian inference about some other quantity—as it

would be in interpolation or prediction problems, for example—then we

want to perform model mixing (�2.1.7), and thus need to evaluate all parts

of the posterior distribution which have significant probability.

5.5 Markov chain Monte Carlo

Since we cannot evaluate equation (5.20) analytically, we take an MCMC

approach, as described in �5.3.2.

5.5.1 Sampling strategies

We consider sampling steps which exploit some of the analytic properties

of the Volterra NAR model.
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5.5.1.1 Joint sampling

If variables are strongly dependent, the Gibbs sampler will tend to converge

slowly [182]. Since there is likely to be strong interdependence between

the indicator and parameter of each term, we speed convergence by sam-

pling jointly from the indicators and their associated parameters, which can

be viewed as equivalent to Geweke’s [71] approach to variable selection

problems:

(�u� bu) � p(�u� bu � y��f � bf � �
2
b � �

2
e ) (5.21)

where (�)u denotes the element which is being updated in this move, (�)f

contains the remainder of the elements, which are being treated as fixed for

this step (�4.4.1.1)4 Each iteration, this sampling operation is performed

once for each term, in a random scan.

The joint sampling operation of step (5.21) can be performed in two

steps using the method of composition [179]:

�u � p(�u � y��f � bf � �
2
b � �

2
e ) (5.22)

bu � p(bu � y��� b�f
� �2

b � �
2
e ) (5.23)

where b�f
consists of those elements of bf for which the corresponding in-

dicators in �f are set to one. The distributions required for steps (5.22) &

(5.23) are derived in �5.5.2.1.

Note that step (5.22) is not conditional on bu, which is analytically

marginalised. As discussed in �5.3.2.2, if, after step (5.22), �u � 0 then

step (5.23) need not be carried out, as bu will then have no effect on the

model, and no future sampling moves would be conditioned on the sam-

pled value.

5.5.1.2 Blockwise sampling

There will also be interdependence between the parameters and indicators

of different terms. We can address this by multivariate sampling of the

4In this case, (�)f is equivalent to (�)[�u], but u becomes a set in �5.5.1.2.
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indicators, in blocks of size nu, again jointly with the associated parameters:

(�u� bu) � p(�u� bu � y��f � bf � �
2
b � �

2
e ) (5.24)

which again can be performed in two steps:

�u � p(�u � y��f � bf � �
2
b � �

2
e ) (5.25)

b�u
� p(b�u

� y��� b�f
� �2

b � �
2
e ) (5.26)

These conditional distributions are derived in �5.5.2.1. Step (5.26) only

updates the parameters for those terms whose indicators are one, as the

values of disabled terms’ parameters are never used.

The greatest improvement in mixing will be achieved if the most highly

correlated model terms are sampled jointly. In a Volterra expansion, how-

ever, it is hard to predict which terms these will be, so different random

groups of size nu are sampled each iteration such that each term is sam-

pled once.

Step (5.25) requires the evaluation of the conditional for 2nu combina-

tions of terms, so nu will generally be quite small. Varying nu allows a

trade-off between the number of iterations required for convergence and

the computational complexity of each iteration.

5.5.1.3 Straightforward univariate sampling

For comparison, a straightforward method is also used, similar to that of

Kuo & Mallick [119], discussed in �5.3.2.2. Each indicator is sampled con-

ditional on the value of the corresponding parameter:

�u � p(�u � y��f � b� �
2
e ) (5.27)

The distribution from which bu is sampled depends on the state of the in-

dicator. If �u � 1 then bu is drawn from its full conditional distribution,

which is the same as step (5.23). If �u � 0 then, although bu has no effect

on the model, its value will be used next time the corresponding indicator

is updated, so it must be sampled. Any arbitrary pseudo-prior can be used

(see �5.3.2.2), but we follow Kuo & Mallick [119, 120] in choosing the
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parameter’s prior distribution. Hence,

bu �
��
�p(bu � y��� b�f

� �2
b � �

2
e ) if �u � 1

p(bu � �2
b ) if �u � 0

(5.28)

The probability mass function for step (5.27) is derived in �5.5.2.2.

5.5.2 Conditional distributions

We now derive the distributions from which we need to sample.

5.5.2.1 Joint, blockwise sampling

We consider here the distributions required for the joint, blockwise sampling

scheme of �5.5.1.2. Those required for �5.5.1.1 can be obtained simply by

reducing these to one dimension.

We derive the (discrete) distribution for �u (step 5.25) from the likeli-

hood as follows:

p(y� b�u
� �� b�f

� �2
b � �

2
e ) �

Likelihood� �� �
p(y � �� b�� �2

e ) �
Prior� �� �

p(b�u
� �2

b ) (5.29)

p(y � �� b�f
� �2

b � �
2
e ) �

�
p(y� b�u

� �� b�f
� �2

b � �
2
e ) db�u

(5.30)

p(�u � y��f � b�f
� �2

b � �
2
e ) � p(y � �� b�f

� �2
b � �

2
e ) � p(�u)� �� �

Prior

(5.31)

which simplifies, as shown in �B.2, to

p(�u � y��f � b�f
� �2

b � �
2
e ) � p(�u)

&
�Ccb�u

�
�Cpb�u

� exp
�

1
2�

T
cb�u

C�1
cb�u

�cb�u

�
(5.32)

where

C�1
cb�u

�
1
�2

e
YT
�u

Y�u
� C�1

pb�u
(5.33)

�cb�u
�

1
�2

e
Ccb�u

YT
�u

ef (5.34)

where Y�u
contains those columns of Y which correspond to ones in �u,

and ef � y1 � Y�f
b�f

, the excitation which would need to be applied if �u
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was all-zero. To draw a sample from this discrete, multivariate distribution,

equation (5.32) is evaluated for each of the 2nu possible values of �u. These

values are then used to form a c.d.f. so that the method of �3.4.1 can be used.

Step (5.26) is a straightforward draw from a multivariate Gaussian:

p(b�u
� y��� b�f

� �2
b � �

2
e ) � N

�
b�u

� �cb�u
�Ccb�u

�
(5.35)

5.5.2.2 Univariate sampling

In step (5.27), each indicator is sampled conditional on the parameter val-

ues. From Bayes’ theorem,

p(�u � y��f � b� �
2
e ) � p(y � �� b� �2

e ) p(�u) (5.36)

which can be written using equation (5.17) as

� p(�u) N
�
y1 � Y�b� � 0� �2

e Ine

�
(5.37)

which can be rearranged, in a similar manner to �B.2, as

� p(�u) N
�
y1 � Y�f

b�f
� Yu�u � 0� �2

e Ine

�
(5.38)

� p(�u) N
�
Yu�u � ef � �

2
e Ine

�
(5.39)

where ef is defined as in �5.5.2.1. This can then be rearranged using equa-

tion (A.5) and greatly simplified by neglecting any terms which are inde-

pendent of �u, to give

p(�u � y��f � b� �
2
e ) �

��
�p(�u) exp

�
� 1

2�2
e

�
b2

uYT
u Yu � 2buYT

u ef

��
if �u � 1

p(�u) if �u � 0

(5.40)

The normalising constant can be computed simply by summing over the

two possible states.

5.5.2.3 Other sampling steps

It is straightforward to sample all the NAR parameters which are currently

included in the model, b�, jointly using equation (5.35) by partitioning such
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Algorithm 5.1. Subset selection for the NAR model using the Gibbs sampler.

Choose initial values
for i = 	1 � � � number of iterations


repeat
Choose a group (�)u of nu nonlinear model terms to sample
�u � p(�u � y��f � b�f

� �2
b � �

2
e )

b�u
� p(b�u

� y��� b�f
� �2

b � �
2
e )

)
— or the steps of �5.5.1.3

until all model terms have been sampled
b� � p(b� � y��� �2

b � �
2
e )

�2
b � p(�2

b � b�)
�2

e � p(�2
e � y� �� b�)

end for

that (�)u contains all the terms, leaving (�)f empty. Making this move occa-

sionally can further improve mixing.

The hyperparameter, �2
b , and excitation variance, �2

e , are sampled from

their full conditionals, which are inverse Gamma distributions, in simple

Gibbs sampler moves, as described in ��4.5.1.3 & 4.5.1.2.

5.5.3 Algorithm

The sampling steps are carried out as shown in Algorithm 5.1. Initial values

could be drawn from the priors, although, for the indicators, this is unlikely

to give a better starting point than just starting at any arbitrary subset.

5.6 Results

Two experiments were performed: the first to verify that model selection

is performed correctly, and the second to compare the performance of the

various sampling schemes.

5.6.1 Verification

The following NAR process was simulated:

yt � et � 0�5yt�2 � 0�3y2
t�1 � 0�1yt�1 y2

t�2 (5.41)

et � N
�
et � 0� 0�25

�
(5.42)
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Figure 5.2. Evolution of indicators over first 300 iterations: black pixels
represent �i � 1.
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Figure 5.3. Marginal model term posterior probabilities: analytically cal-
culated probabilities, and estimates based on the first 100 000, 200 or 30
iterations of the Gibbs sampler (after a burn-in of 10 iterations).
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Table 5.1. Composition of subsets in Figure 5.4: the symbol � indicates that
the term is included in the subset, and Æ that it is not. Subset a corresponds
to equation (5.41).

Subset

Indicator Term a b c d e f g h i j k l

�(1) yt�1 Æ Æ Æ Æ � Æ Æ Æ � Æ Æ Æ
�(2) yt�2 � � � � � � � � � � � �
�(1�1) y2

t�1 � � � � � � � � � � � �
�(1�2) yt�1 yt�2 Æ Æ Æ � Æ Æ Æ Æ Æ � Æ Æ
�(2�2) y2

t�2 Æ Æ Æ Æ Æ � Æ Æ Æ Æ Æ Æ
�(1�1�1) y3

t�1 Æ Æ Æ Æ Æ Æ Æ � Æ Æ Æ Æ
�(1�1�2) y2

t�1 yt�2 Æ Æ � Æ Æ Æ Æ Æ Æ � � Æ
�(1�2�2) yt�1 y2

t�2 � Æ � � � � � � Æ � Æ Æ
�(2�2�2) y3

t�2 Æ Æ Æ Æ Æ Æ � Æ Æ Æ Æ �

a b c d e f g h i j k l
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Figure 5.4. Subset model posterior probabilities: analytically calculated
probabilities, and estimates based on the first 100 000, 200 or 30 iterations
of the Gibbs sampler (after a burn-in of 10 iterations). Subsets labelled as
in Table 5.1.
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and 1000 samples taken for analysis. All nine first, second and third-degree

terms up to lag two were used as candidates.

Starting from an empty model, the sampler was run for 100 000 iter-

ations, sampling indicators in random groups of three elements, �u, hav-

ing marginalised bu. To facilitate comparison between the sampler output

and analytically computed posterior model probabilities, �2
e was fixed at the

correct value, and �2
b at 0.25.

Figure 5.2 shows the values of the indicators in each of the first 300

iterations. It can be seen that the correct terms are chosen by the third it-

eration, but that there remains some uncertainty, due to the shortness of

the data block.

Figure 5.3 shows the marginal model term posterior probabilities, p(�i �
y� �2

b � �
2
e ), which were computed analytically, together with estimates from

the sampler output. The first estimate was made using all 100 000 iterations,

after discarding the first 10 as burn-in due to the atypical initial state. It

agrees extremely closely with the analytic result—the largest error in proba-

bility is 0.001. An estimate made from only the first 200 iterations has much

greater errors (0.03), but the overall shape is still very close. If only the first

30 iterations are used, the high probability terms are still correctly identified.

A more useful approach is to consider the posterior model probabilities,

p(� � y� �2
b � �

2
e ). These were computed analytically for all 512 possible subset

models. This exhaustive computation is only feasible with such a small

number of candidate terms (see �5.2.1). The twelve most probable subsets,

which account for 98% of the total probability, are identified in Table 5.1.

Figure 5.4 plots these calculated probabilities together with estimates of the

same subsets’ posterior probabilities made from the sampler output. Again,

the estimate from 100 000 iterations is very close, with the largest error

being 0.002. After 200 iterations, the basic shape is the same, but there

are noticeable errors. After only 30 iterations, the most probable subset is

clearly identified, but the tails have not been explored.

5.6.2 Comparison of sampling schemes

In order to compare the sampling schemes listed in Table 5.2, each was run

580 times for 50 iterations, each time on a different realisation of 5000
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samples from the NAR process with parameters

b(2) � �0�2 b(3) � 0�1 b(1�2) � 0�2

b(1�3) � �0�2 b(2�3) � 0�2 b(1�2�3) � �0�3
(5.43)

and white Gaussian excitation with variance 0.18. Each run started with an

empty model and arbitrary hyperparameter values. All 19 Volterra terms up

to third degree, third lag were available as candidates.

Figure 5.5 shows the mean across the ensemble of runs of each indicator

at each iteration5. When all runs have converged, each should produce

samples from the correct posterior distribution, so the ensemble mean of

each indicator value should be an estimate of p(�i � y), and hence should

not change significantly between iterations. It can be seen that all three

sampling schemes seem to converge quickly, but scheme N1 takes slightly

longer than schemes M1 or M5.

Figure 5.6 shows the same data in a different manner, for easier compar-

ison. The proportion of the runs which choose the correct subset converges,

under all sampling schemes, to around 0.26. There is considerable model

uncertainty in this problem due to the large number of candidate models

and the small amount of data—there are many subset models which differ

from the correct model only by the inclusion or exclusion of a small number

of terms. If the Hamming distance is used as a measure of model error, it

can be seen that the mean distance converges to about 1.5 terms. In both

graphs, the lines for schemes M2, M3 and M4 fall between those for M1 and

5This can be visualised as multiple images similar to Figure 5.2, but more faint, overlaid and
held up to a strong light.

Table 5.2. Sampling schemes used in comparison experiment.

Scheme Description

N1 Non-marginalised sampling, in blocks of 1 (�5.5.1.3)
M1 Marginalised sampling, in blocks of 1 (�5.5.1.1)
M2 Marginalised sampling, in blocks of 2 (�5.5.1.2)
M3 Marginalised sampling, in blocks of 3 (�5.5.1.2)
M4 Marginalised sampling, in blocks of 4 (�5.5.1.2)
M5 Marginalised sampling, in blocks of 5 (�5.5.1.2)
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Figure 5.5. Proportion of runs choosing each model term: under sampling
scheme (top) N1, (middle) M1 and (bottom) M5. The correct terms are those
numbered 2, 3, 5, 7, 8 and 14. Darker pixels represent higher proportions,
following the scale of Figure 4.2.

M5, but are omitted for clarity.

Clearly, marginalising the parameter values improves the rate of con-

vergence. Blockwise sampling then gives a slight further improvement, al-

though at considerable computational cost.

5.7 Discussion

In this chapter, we have considered the need for subset selection in non-

linear models and found that exhaustive searches are infeasible, other than

for small models, and that stepwise searches can have problems with lo-

cal minima.

We have discussed genetic algorithms and existing MCMC approaches

to subset selection, then introduced a related MCMC method applied to our

model and demonstrated how its performance can be improved by exploit-
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Figure 5.6. Measures of convergence to correct subset: for sampling scheme
(dotted) N1, (light) M1 and (heavy) M5.

ing the analytic properties of the polynomial NAR model.

By applying the MCMC method to a problem small enough for all pos-

terior probabilities to be computed analytically, we have shown that it pro-

duces very good estimates of model probabilities from a long run, and that

the most probable models are correctly identified even in a very short run.

Where this sort of problem occurs in models with a natural ordering, for

example an MA model of an echo path, it would be best addressed with an

approach which favours choosing contiguous blocks of terms. This could be

done through the use of a more elaborate prior on the subset indicators, or

alternatively through the use of a reversible-jump sampler with specialised

moves for splitting and merging blocks of relevant terms.
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Restoration of
nonlinearly distorted audio 6

6.1 Introduction

As discussed in �2.2.3, autoregressive processes are used to model a wide

range of signals. This chapter addresses the problem of reconstructing such

a signal from a nonlinearly distorted version of it, when neither the precise

form of the nonlinearity nor the order of the AR process are known.

6.1.1 Nonlinear distortion

Most research into audio restoration techniques has concentrated on the

removal of clicks, crackle and surface noise (see e.g. [45, 87, 111, 198]),

all of which are effectively separate signals which are independent of, and

additively superimposed on, the desired clean signal. The restoration of

signals which have been degraded by passing through a nonlinear channel

has received relatively little attention.

Under ideal conditions, passing an audio signal through an analogue

recording stage introduces little nonlinear distortion. It is, however, a con-

siderable problem with many archived recordings. Some of the main causes

are:

� Saturation in magnetic recording (see e.g. [53, 103])

� Tracing distortion [43, 123] (before precompensation was introduced

[159, 203]) and groove deformation [11, 174] in records

� The inherent nonlinearity of variable density optical soundtracks [4]

95
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6.1.2 Memoryless nonlinearities

The intended application is the restoration of nonlinearly distorted audio

signals. Most previous work on this problem has considered only memo-

ryless nonlinearities.

6.1.2.1 Histogram equalisation

Histogram equalisation [207] is a simple technique to estimate a memoryless

nonlinear transfer function through which a speech signal has been passed.

A smooth function is fitted through a histogram of sample values from an

extract of the signal. This is compared with a reference histogram shape,

based on analysis of a range of speakers, and a 1:1 mapping is derived which

will make the smoothed histogram conform with the reference one. This

mapping is then applied to the distorted signal.

Because it assumes that the original signal closely conforms to a stan-

dard reference histogram, this method cannot readily be applied to complex

music signals, where histograms differ greatly between recordings and vary

significantly over the duration of a recording. The algorithm was origi-

nally proposed for use in speech communication channels, and has led to a

patented device [206]. A related method has been used to restore recordings

made using early analogue-to-digital convertors with non-uniform quanti-

sation step heights and some missed codes [196]. Since these are all small-

scale, local defects, they can be reduced by smoothing the histogram, with-

out the need for a reference.

6.1.2.2 Signal reconstruction with known nonlinearity

For situations in which distortion is caused by a known memoryless non-

linearity, an iterative algorithm [154] has been proposed to reconstruct the

original signal where only a bandlimited version of the distorted signal is

available. The algorithm does not appear to have been developed further,

possibly because it is unusual for the exact form of the nonlinearity to

be known.

6.1.2.3 Model-based estimation of nonlinear function

Mercer [141, Ch. 3,4] uses an AR model for the signal, and a Taylor ex-

pansion to model the memoryless nonlinearity. Although the parameter
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estimation procedure works correctly for synthetically distorted audio, he

finds that the approach does not work well in real problems. He concludes

that a more flexible channel model is needed. This seems reasonable, as

many practical sources of nonlinear distortion, such as transducer overload-

ing and tape saturation, are not memoryless.

6.1.3 Nonlinear autoregressive distortion

We allow for memory effects by modelling the distortion process using the

NAR model considered in Chapter 5. The NAR model incorporates a non-

linear function which is approximated by a Volterra polynomial expansion

of past sample values. As in Chapter 5, to avoid severe overfitting, it is

necessary to select a subset of the many candidate polynomial terms.

6.1.3.1 Stepwise search

Mercer [141, Ch. 5,6] uses a similar model, but his approach is very dif-

ferent. He uses a stepwise regression procedure to choose model terms,

with maximum likelihood parameter estimates. To reduce the computation

required for each step of the algorithm, Mercer uses a coarse grid search

followed by a local optimisation. After performing this selection procedure

for several values of k, a model is chosen using the AIC (see �2.1.6.2).

As discussed in Chapter 5, the problem with stepwise regression and

other deterministic search algorithms is that they can get stuck at local min-

ima, i.e. subsets which are better than all the neighbouring ones but not

the best overall. This is a particular problem in nonlinear model selection

problems, as the search space tends to be highly multimodal.

6.1.3.2 Bayesian subset selection

We present here a fully Bayesian approach, implemented using MCMC

methods, which has the advantage, in the case of model uncertainty, that

model mixing can be used, so that the reconstruction is based on all the

possible models, weighted according to their posterior probabilities, rather

than just the single most probable one.
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et AR
k� a(k)

xt NAR
b��

yt

Figure 6.1. Cascade of AR source model and NAR distortion model.

6.2 Model framework

Figure 6.1 shows that we use a cascade model consisting of an AR source

model, as used in Chapter 4, driving a NAR channel model, as used in

Chapter 5.

6.2.1 Modelling equations

To recap, a linear AR model of order k can be expressed as (eq. 2.26)

xt � et �

k�
i�1

a(k)
i xt�i (6.1)

where

	et
 is a zero-mean i.i.d. Gaussian excitation sequence

	a(k)
i 
 are the parameters of the AR process.

and the triangularised polynomial NAR channel model can be written as

(eq. 5.13)

yt � xt �

�b�
i�1

i�
j�1

�(i�j) b(i�j) yt�i yt�j �

�b�
i�1

i�
j�1

j�
k�1

�(i�j�k) b(i�j�k) yt�i yt�j yt�k

� higher degree terms (6.2)

where

	yt
 is the distorted signal we observe

	xt
 is the undistorted signal (eq. 6.1)
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	b(i�j)� b(i�j�k)� � � � 
 are the parameters of the NAR distortion process

	�(i�j)� �(i�j�k)� � � � 
 are the corresponding binary indicators

�b is the maximum lag of the NAR model

To avoid possible uniqueness problems when used in cascade with the lin-

ear AR model, purely linear terms have been excluded from the expansion

[141]. As discussed in �6.5.1, this is not always necessary.

A major advantage of this model formulation is that the inverse of the

nonlinear stage is a straightforward nonlinear moving average (NMA) filter,

which is guaranteed to be stable. Hence it is simple to reconstruct the signal

	xt
 from 	yt
 for a given set of NAR parameters, 	b(i�j)� b(i�j�k)� � � � 
.

6.2.2 Subset & matrix-vector representation

Adopting the same matrix-vector notation as Chapters 4 & 5, we can ex-

press equations (6.1) & (6.2) as

e � A(k)x � x1 �X(k)a(k) (6.3)

x � y1 � Y(b Æ �) (6.4)

where

Æ denotes the Hadamard (elementwise) product

b contains all the NAR parameters (eq. 5.14)

� contains the associated binary indicators

x1 omits the first k terms of x

y1 omits the first �b terms of y

A(k) and X(k) are matrices containing elements from a(k) and x,

respectively (eq. 2.31 & 2.30)

Y is a matrix containing products of elements of y (�5.4.2)

6.2.3 Likelihoods

The approximate likelihood for the linear model can be derived as (eq. 4.13)

p(x � k� a(k)� �2
e ) � p(x � x0� k� a(k)� �2

e ) (6.5)

� N
�
x1 �X(k)a(k) � 0� �2

e Ine

�
(6.6)
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where x0 contains the initial k elements of x and Ine is the identity matrix

with the same number of rows as e. Equation (6.6) can be rearranged to

show that x is coloured zero-mean Gaussian noise which is approximately

described by

x � N(x � 0�Cx) where C�1
x �

A(k)TA(k)

�2
e

(6.7)

and �2
e is the variance of e. The approximation is due to conditioning on x0,

which is well known to be an insignificant end-effect unless ne is small [23].

The approximate likelihood for y can hence also be expressed as a mul-

tivariate Gaussian (eq. 5.17):

p(y � �� b�� k� a(k)� �2
e ) � p(y � y0��� b�� k� a(k)� �2

e ) (6.8)

� N
�
A(k)(y1 � Y�b�) � 0� �2

e Ine

�
(6.9)

� N
�
y1 � Y�b� � 0�Cx

�
(6.10)

where y0 is the first �b elements of y and the notation (�)� denotes a parti-

tion containing only elements corresponding to ones in �, such that Y�b� �

Y(b Æ �).

6.2.4 Priors

We choose the same proper, conjugate, but fairly uninformative priors as

used for the two separate parts of the model in ��4.3.2 & 5.4.4: bounded

uniform for k, Bernoulli for �, multiple independent Gaussians for a(k) and

b, and inverse Gamma distributions for �2
a , �2

b and �2
e .

6.2.5 Bayesian hierarchy

We wish to reconstruct the signal, x. Doing this using equation (6.4) requires

knowledge of � and b�, whose joint posterior is

p(�� b� � y� k� a(k)� �2
b � �

2
e ) � p(y � �� b�� k� a(k)� �2

e ) p(�) p(b� � �2
b ) p(�2

b )

(6.11)
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This, however, is dependent on k and a(k), which are also unknown, and

have posterior:

p(k� a(k) � x� �2
a � �

2
e ) � p(x � k� a(k)� �2

e ) p(k) p(a(k) � �2
a ) p(�2

a ) (6.12)

which is dependent on x.

6.3 Markov chain Monte Carlo

Since we cannot evaluate the required marginal distributions analytically,

we again take the MCMC approach.

One of the great advantages of MCMC methods is that extra parame-

ters and different types of move can easily be incorporated to tackle more

complex problems. This results in a Markov chain with a mixture transition

kernel [182], for which the same convergence results hold.

6.3.1 Reversible-jump moves for the linear stage

For this problem, we use, unchanged, the reversible-jump moves of �4.4.3 to

accommodate uncertainty over k, the order of the linear AR model, together

with the Gibbs sampling steps of ��4.5.1.1, 4.5.1.2 & 4.5.1.3 for the AR

parameters, a(k), and the hyperparameters.

6.3.2 Gibbs moves for the nonlinear stage

For subset selection and parameter estimation in the nonlinear model stage,

the Gibbs sampling steps of �5.5.2.1 must be modified, as the NAR process

is now excited by a non-white Gaussian signal, x.

The derivation of the distribution from which to sample �u is similar to

that of �5.5.2.1, except that C�1
x �

A(k)TA(k)

�2
e

(eq. 6.7) appears in the Gaus-

sian terms, resulting in

p(�u � y��f � b�f
� k� a(k)� �2

b � �
2
e ) � p(�u)

&
�Ccb�u

�
�Cpb�u

� exp
�

1
2�

T
cb�u

C�1
cb�u

�cb�u

�
(6.13)
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Algorithm 6.1. Restoration of NAR distorted audio.

Choose initial values
for i = 	1 � � � number of iterations


repeat
Choose a group (�)u of nu nonlinear model terms to sample
�u � p(�u � y��f � b�f

� k� a(k)� �2
b � �

2
e )

b�u
� p(b�u

� y��� b�f
� k� a(k)� �2

b � �
2
e )

until all nonlinear model terms have been sampled
b� � p(b� � y��� k� a(k)� �2

b � �
2
e )

�2
b � p(�2

b � b�)
Reconstruct x from y using �� b�
for r = 	1 � � � number of reversible-jump moves per iteration


k� � J(k� � k)
z � U(0� 1)
if z � �(k � k� � x� �2

a � �
2
e )

k � k�

end if
a(k) � p(a(k) � x� k� �2

a � �
2
e )

�2
a � p(�2

a � a(k))
�2

e � p(�2
e � x� k� a(k))

end for
end for

where

C�1
cb�u

� YT
�u

C�1
x Y�u

� C�1
pb�u

(6.14)

�cb�u
� Ccb�u

YT
�u

C�1
x (y1 � Y�f

b�f
) (6.15)

and Y�u
contains those columns of Y which correspond to ones in �u.

Again, b�u
is drawn in a simple Gibbs move from a multivariate Gaus-

sian:

p(b�u
� y��� b�f

� k� a(k)� �2
b � �

2
e ) � N

�
b�u

� �cb�u
�Ccb�u

�
(6.16)

and all of b� can be sampled jointly in a similar move (�5.5.2.3). The Gibbs

sampling step for the hyperparameter, �2
b , is unchanged.
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6.3.3 Sampling strategy

Since x is relatively expensive to compute, particularly when processing long

signals (see �6.5.1), we separate our sampling moves into those which affect

the linear AR model and those which affect the nonlinear model. In each it-

eration, these two groups are sampled in turn—see Algorithm 6.1. Sensible

initial values for the parameters could be drawn from their prior distribu-

tions. As we are using quite uninformative priors, we choose to start with

null models, i.e. k � 0 and � � 0.

6.4 Experiments with single blocks

6.4.1 Synthetic data

To test the model estimation procedure, 8000 samples were generated from

a synthetic AR-NAR process with AR order 6 and six nonlinear terms:

b(2�2) � �0�20 b(4�1) � 0�18 b(5�4�1) � �0�16

b(5�5�3) � 0�16 b(5�5�5) � 0�20 b(2�2�2�1) � �0�10
(6.17)

Figure 6.2 shows the result of running the sampler for 2000 iterations with

82 candidate nonlinear terms (second and third degree to lag 6 and fourth

degree to lag 2). Indicators were sampled in random triples, and eight

reversible-jump moves were proposed each iteration. It was initialised with

an empty model and arbitrary values for �2
e , �2

a and �2
b . Because the initial

values are atypical of the posterior distribution, as is usually the case with

problems in high dimensions, the beginning of the run was discarded as

burn-in and only values from the final 1000 iterations were used for analysis.

Figure 6.2d–e shows that the sampler converged very quickly to the cor-

rect AR model order. The six nonlinear model terms which appear most

frequently in the sampler output (Figure 6.2a–b) are correct; that subset

accounts for over 50% of the iterations (Figure 6.2c).

Figure 6.3 shows Monte Carlo estimates of the posterior distributions

of the parameter values, produced from those iterations which selected the

most popular model. It can be seen that the estimated distributions have
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substantial probability mass close to the known true values. The scatter plot

in Figure 6.4 shows that the AR parameters were also accurately estimated.

6.4.2 Synthetically distorted audio

1000 samples from a 44.1 kHz pop music recording were distorted by the

following NAR filter:

yt � xt � 0�15y2
t�2 yt�1 � 0�2yt�2 y3

t�1 � 0�08y2
t�2 y3

t�1 � 0�005yt�2 y4
t�1

(6.18)

This introduced distortion 11 dB below the r.m.s. signal level. We call this

a distortion-to-signal ratio (DSR) of -11 dB.

The sampling scheme was run for 4500 iterations, again starting

with empty models and arbitrary initial hyperparameter values, with 58
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candidate nonlinear terms (second and third degree up to lag 4, fourth de-

gree up to lag 3 and fifth and sixth degree up to lag 2), and allowing AR

models up to order 100. Figure 6.5 shows the sampler output together with

the DSR. It can be seen that after 1700 iterations the correct nonlinear terms

have been chosen and the reconstruction is almost perfect—the DSR is im-

proved to an average of around -69 dB. It is interesting that, even after as

few as 100 iterations, the DSR is consistently around -34 dB, a useful im-

provement of 23 dB. Figure 6.6 shows the initial, distorted waveform, the

reconstruction after 100 iterations and the reconstruction after 3000 itera-

tions, each with the original, undistorted waveform for comparison.

6.5 Extension to long signals

We now consider how to apply this method to the restoration of distorted

audio signals. A conventional approach to speech and audio modelling

is to break the signal into blocks which are sufficiently short that it is
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reasonable to assume stationarity (see e.g. [89]). Typical block lengths are

around 25 ms.

6.5.1 Joint estimation over multiple blocks

A crude approach would be to process each block separately. With many

distortion problems, however, we can expect the distortion process to re-

main unchanged for the duration of the signal, which could be many min-

utes. This can be exploited by estimating b and � over many (not necessarily

contiguous) blocks of audio, y[r]� r � 	1 � � �R
, the source model for each

of which has separate parameters k[r], a(k)
[r] and �2

e [r].

This changes the structure of C�1
x (eq. 6.7), which is required when

sampling the global parameters � and b. It can, however, be computed

quickly, since

C�1
x �

R�
r�1

1
�2

e [r]

Ã(k[r])T
[r] Ã(k[r])

[r] (6.19)

where Ã(k[r])
[r] is A(k[r])

[r] padded left and right with an appropriate number of

columns of zeros. The computation required hence increases only linearly

with the number of blocks, and much can be performed in parallel.

This multiple block technique is a powerful approach, as it allows large

quantities of data to be processed at once, all contributing to the model

selection process. As long as the signal does vary significantly over its du-

ration, linear model terms can be permitted in the channel model without

introducing ambiguity. This introduces the possibility of modelling linear

phenomena such as reverberation as well as purely nonlinear effects.

6.5.2 Long audio signal

A four second extract from a 44.1 kHz sampled orchestral recording (Track

6 on the accompanying CD—see Appendix C) was artificially distorted by

a NAR filter with the following parameters:

b(1�4�6) � �0�07 b(2�2�3) � �0�05 b(3�6�8) � �0�06

b(4�7�7) � �0�06 b(8�9�9) � �0�05
(6.20)
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Figure 6.7. Restoring a long audio signal: part of the original signal (dotted)
with (solid, from top): distorted signal y; restored signal, x̂.

The resulting signal has a DSR of -10.5 dB, and the degradation is clearly

audible (Track 7).

Thirty randomly chosen, non-contiguous blocks of 1000 samples were

used for analysis, and the sampler was run for 500 iterations with all 220

third degree nonlinear terms up to lag 10 as candidates. The model space

is so large that no subset appears more than once in the sampler output.

However, from the 50th iteration onwards, the DSR of the restoration is

always better than -23.6 dB. Allowing model mixing by making a Monte

Carlo estimate of x directly from the final 250 iterations decreases (i.e. im-

proves) the DSR to -27.8 dB. Since the model is linear-in-the-parameters

[151], this is equivalent to performing a restoration using a single NMA fil-

ter incorporating all the terms which appear in the sampler output, with

the parameters averaged over all the iterations, treating excluded terms’

parameters as zeros.
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Figure 6.7 compares the waveforms of part of the original signal with

the distorted signal and the model-averaged restoration. It can be seen that

the restored signal matches the original signal closely. The restored signal

(Track 8) is hard to distinguish from the original (Track 6).

6.6 Discussion

6.6.1 Real audio distortion

Physical distortion-producing processes, such as tape saturation, are often

followed by linear processes, such are playback equalisation. Extremely

large Volterra expansions can be required to model these adequately, so

future work will consider modelling these explicitly as a third, either AR

or MA, stage in the cascade model. The parameters of this extra stage

can then be estimated jointly across the whole duration of the signal. The

effects of bandlimiting could be similarly incorporated [154]. It may also be

advantageous to model explicitly any background noise or outliers caused

by defects in the recording medium. The latter can be done using further

indicator variables within the same MCMC scheme [84–86, 88].

6.6.2 Conclusions

The novel MCMC method presented here jointly estimates the structure

and parameters of a cascade AR-NAR model. Using the efficient reversible-

jump proposal distributions and joint Gibbs sampler moves developed in

previous chapters, we have exploited the partially analytic structure of both

the linear and nonlinear parts of the model to speed the convergence of

the Markov chain.

This approach allows for model mixing, which is important in this ap-

plication as there is uncertainty: often no single nonlinear model dominates

the posterior. It also allows estimation of a fixed channel model from obser-

vation of a long, time-varying signal without a dramatic increase in com-

putation.
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7.1 Quantisation problem

For digital processing, transmission or storage, a signal is represented as

discrete in both time (due to sampling) and value (due to quantisation).

Nyquist [145] showed that, in the absence of quantisation, the sampling

process is lossless if the signal is bandlimited to below half the sampling

frequency.

The quantisation process, however, introduces an error component, of-

ten referred to as quantisation noise. Since this quantisation error is signal-

dependent (as we shall see in �7.1.3), it is perhaps better described as quan-

tisation distortion.

7.1.1 Word length in digital audio

In digital audio systems, the quantised sample values are usually stored as

binary numbers representing signed integers. It is normal to describe the

quantisation used in a digital system by the number of bits used to represent

each sample. This is called word length or bit depth.

Table 7.1 shows the maximum and minimum integer values which can

be stored in words of various lengths when using two’s-complement repre-

sentation. It also shows the approximate r.m.s. power of the quantisation

error. This is expressed in dBFS, where 0 dBFS is defined as the r.m.s. power

of a full scale sine wave [1]. It can be seen that, as expected, each additional

bit halves the quantisation step height, and hence increases the dynamic

range by about 6 dB.

111
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Table 7.1. Typical word lengths used in audio.

Word length Integer range Quantisation level
(bits) (dBFS, r.m.s.)

8 -128 – 127 -48
12 -2048 – 2047 -72
16 -32768 – 32767 -96
20 -524288 – 524287 -120
24 -8388608 – 8388607 -144

O
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tv
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,y
t

Input signal value, xt

Ideal output

Output of
perfect quantiser

Quantisation error

�

Figure 7.1. Transfer function of, and quantisation error introduced by, a
perfect mid-tread quantiser with step height �.
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7.1.2 Perfect quantiser

The quantisation process is memoryless and deterministic:

yt � Q(xt) (7.1)

where 	xt
 is the original signal, 	yt
 is the quantised signal, and Q(�) is the

quantisation function. Figure 7.1 shows the transfer function of a perfect

quantiser. If the � � 1, then Q(�) is equivalent to rounding to the nearest

integer. In practical analogue-to-digital converters, quantisation is often far

from perfect, possibly exhibiting uneven step heights and missed codes (see

e.g. [196]). As long as these defects are memoryless, they can be incorpo-

rated straightforwardly into Q(�).
Quantisation is also performed in the digital domain: when signal values

are involved in multiplication, in order to adjust the level of the signal or

perform equalisation, the results are generally non-integer. The arithmetic

operations are usually performed at high precision1, but the result must be

requantised before it can be stored in memory of limited word length. The

cheapest way to do this is simply to truncate the binary representation of

the signal at the number of bits required. This is essentially equivalent to

rounding and adding a fixed offset.

7.1.3 Quantisation distortion

Figure 7.2 shows the effect of quantising a very low amplitude (-84 dBFS on

a 16 bit system) sine wave. The resulting error, of peak-to-peak amplitude

�, is clearly signal dependent.

Figure 7.3a shows the corresponding periodogram estimates of the

power spectrum. The quantisation distortion looks like odd harmonic dis-

tortion and a fairly flat noise floor, which one would expect to sound quite

innocuous. In fact, using a longer data window to allow us to resolve finer

detail (fig. 7.3b) shows that the distortion consists entirely of isolated sinu-

soids: quantisation has introduced harmonics; those above the Nyquist fre-

quency (22.05 kHz) have repeatedly been aliased back into the baseband,

where they are inharmonic.

The structure of the distortion is particularly clear here because the

1Many microprocessors used for audio perform fixed point arithmetic with word lengths of
at least 24 bits; floating point processors typically maintain a mantissa of length 24 or 52
bits.
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Figure 7.2. Illustration of quantisation distortion: (top) a 1 kHz sine wave
of amplitude 2, (middle) the same signal, quantised with a step height of 1,
(bottom) quantisation error signal. (After [127].)

components are at intervals of 100 Hz (the highest common divisor of 1000

and 44 100). In general, they will be much more closely spaced; for complex

signals the spectrum of the quantisation distortion becomes almost white,

making it much less noticeable.

Two features of the distortion spectrum are particularly disturbing in au-

dio:

Aliasing When the fundamental frequency of a note varies slightly, the har-

monics vary with it, as expected, but those which have been aliased

will vary in the opposite direction.2

Level sensitivity The relative levels of the various harmonics and aliased

harmonics can change significantly when the input signal amplitude

changes slightly, giving rise to granulation noise [135].

This second phenomenon is often heard on decaying musical notes, where

2 � � � unless they have been aliased twice, or any other even number of times.
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(a) Complete periodogram (1024 bins)
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Figure 7.3. Estimated power spectra of quantised signal: These spectra cor-
respond to the 1 kHz sine wave of Figure 7.2 before and after 16 bit quanti-
sation, assuming a sample rate of 44.1 kHz. Power spectrum estimates were
produced using the FFT on overlapping Hanning-windowed blocks.

aThe amplitude scale is such that a full scale sine wave on a 16 bit system would appear as
a 0 dBFS peak, in accordance with [1].
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Figure 7.4. Estimated power spectrum after dithered quantisation: The
1 kHz sine wave of Figure 7.2 was quantised after adding TPDF dither,
d, with range �1. Contrast with Figure 7.3a.

it is exacerbated by the tendency of many instruments to produce a more

sinusoidal waveform (with a correspondingly peakier distortion spectrum)

as a note decays. Decaying piano notes are a good example of this. Track

9 on the accompanying CD (see Appendix C) is finely quantised (� � 1),

such that the distortion is not noticeable, whereas Track 10 is quantised with

� � 50. This introduces distortion 23 dB below the r.m.s. level of the signal,

where it is clearly audible. Track 11 contains just the difference signal,

i.e. the added distortion, at a higher level. The change in character, from

apparently random noise while the notes are at high amplitude to obviously

signal-correlated distortion as they decay, can be clearly heard.

7.1.4 Dither

There has been much research into the effects of quantisation and their elim-

ination at the time of quantisation through the use of dither (see Lipshitz

et al. [127] for a comprehensive survey), some of which is reviewed below.

7.1.4.1 Additive dither

Dithering, a technique originally developed to avoid banding in quantised

video images [164], involves adding a low-level random component to the

signal before quantisation. If the probability distribution of the dither signal

meets certain criteria [127], certain moments of the quantisation error will

become uncorrelated with the signal.

There is a wide range of dither probability distributions which can be

used, but for audio the optimum choice is a triangular p.d.f. (TPDF) with

range ��, as this is the lowest power dither which decorrelates the first and
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second moments of the quantisation error from the signal, which is all that

is required for it to be perceived as white noise.

Figure 7.4 shows the effect of TPDF dither on the spectrum of the quan-

tisation error of the 1 kHz sine wave considered in �7.1.3. It can be seen

that the distortion components have vanished. The tradeoff for this im-

provement is that the noise floor is now 4.7 dB higher.

The dither makes the least significant bit of the quantised signal keep

changing state such that

p
�
Q(xt � dt) � Q(xt)��

� � xt �Q(xt)
�

(7.2)

where 	dt
 is the dither component. Hence the expected value of the least

significant bit is equal to the fractional value needed to accurately represent

the signal. This can be thought of as a pulse probability modulation scheme.

The effect is to linearise the time-averaged transfer function.

As an extreme example, if the entire signal x lies within one step of the

quantiser, quantisation without dither gives silence, whereas quantisation

with TPDF dither results in a signal with one active bit. Since human hear-

ing integrates over time, the signal can still be perceived, albeit below the

noise floor.

7.1.4.2 Noise shaping

Noise shaping [202] controls the spectral shape of the raised noise floor by

introducing a feedback loop around a dithered quantiser. By careful choice

of a filter in the feedback path, most of the dither energy can be put in

frequency bands at which the ear is less sensitive, or where the noise will

be attenuated by the reconstruction filter in a digital-to-analogue converter.

Hence, although the r.m.s. noise level necessarily increases, the perceived

noise level can be lower. See Gerzon & Craven [69] for a clever application.

7.1.4.3 Subtractive dither

A better way to avoid problems with dither noise is to subtract the dither sig-

nal after quantisation [127]. Unfortunately, the need to recreate the dither

signal with correct synchronisation at the time of conversion back to ana-

logue (or to a longer word length) has so far limited its use to niche areas

(see e.g. [49]).
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Figure 7.5. Modelling of quantised audio: e is the excitation process, x the
undistorted audio signal, and y the observed, quantised audio signal.

7.1.5 The restoration problem

Despite the simplicity with which quantisation distortion can be avoided us-

ing dither, much current audio equipment and software does not implement

it properly or at all. There is therefore a large catalogue of recordings ex-

hibiting quantisation distortion. There does not, however, appear to be any

published work on reconstructing a signal when only a coarsely quantised

version is available. It is this problem which we seek to address.

Of course, if some of the information content of the signal has been

lost in the quantisation process, such as parts which are entirely below the

quantisation level, it cannot be recovered.

It seems likely, however, that what is most objectionable about quan-

tisation distortion is the addition of inharmonic components, rather than

any information loss. If this is so, it should be possible to achieve an au-

dible improvement.

7.2 Restoration using an AR signal model

As shown in Figure 7.5, we model the signal and the quantisation process

explicitly as a cascade model (�2.3.4). Although this approach is similar

in concept to the AR-NAR cascade restoration of Chapter 6 and the AR-

MNL method (�6.1.2.3, [141]), in this case we assume that we know Q(�);
the problem is that it does not have a unique inverse. Whereas before we

were using the linear signal model to enable model selection and parameter

estimation for the nonlinear stage, from which x followed directly, now we

use the linear model to estimate x.

Initially, we use an AR model for the signal, with unknown order k,

parameters a(k) and i.i.d. Gaussian excitation with variance �2
e . As in �4.7

and Chapter 6, the time-varying audio signal is broken up into a series of
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blocks, each with separate parameters k, a(k) and �2
a . To avoid confusing

notation, the following derivations refer only to one block’s parameters.

Taking the Bayesian approach, inference concerning x is made on the

basis of the marginal posterior distribution p(x � y). Since this cannot be

evaluated directly, the joint posterior p(x� k� a(k)� �2
e � y) will be simulated

and a Monte Carlo estimate made of x.

7.2.1 Sampling k, a(k) and �2
e

The model order selection and parameter estimation can be performed in

a reversible-jump MCMC framework, using the priors and methods devel-

oped in Chapter 4, conditioning on the current restoration, x, in the same

manner as in Chapter 6.

7.2.2 Sampling x

The quantisation process is a many-to-one mapping, so its inverse is one-

to-many and provides the range of possible values that the input might

have taken, i.e.

xt � Q�1(yt) (7.3)

In terms of probability distributions,

p(y � x� � � � ) � Æ
�
y�Q(x)

�
(7.4)

where Æ(�) is a Dirac delta function and Q(�) is a vector form of Q(�). Ap-

plying Bayes’ theorem (eq. 2.3) gives

p(x1 � y� k� a(k)� �2
e � x0) �

��
�p(x1 � k� a(k)� �2

e � x0) if x � Q�1(y)

0 elsewhere
(7.5)

where p(x1 � k� a(k)� �2
e � x0) is the conditional likelihood for an AR model

(eq. 2.34).

Since it is not computationally feasible to sample from the whole of x

directly (see �7.2.3), a Gibbs sampler (�3.3.1.3) approach is taken, in which

a subblock, xu, is updated conditional on the rest of the block, xf , which re-

mains fixed. This is repeated, with different partitioning, until all subblocks
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(i.e. the whole block) have been sampled.

The AR model (eq. 2.27) can be partitioned to update one subblock

as follows:

e � A(k)x � A(k)
u xu � A(k)

f xf (7.6)

where (�)f also contains x0 and the first k samples from the following block,

to ensure continuity across the block boundaries.3 (�)u need not be contigu-

ous, but since it is likely that adjacent samples will be more highly corre-

lated, it may be advantageous to sample them jointly (�3.5.3.2).

The full conditional distribution for xu is the same as that required for

interpolation (see e.g. [87, 146]), except that now it is bounded to lie within

Q�1(yu). If the bounds are represented by the function

B(x) �

��
�1 if x � Q�1(y)

0 elsewhere
(7.7)

then equation (7.5) can be rearranged as

p(xu �y� xf � k� a(k)� �2
e ) (7.8)

� B(xu) pe(Auxu � Af xf ) (7.9)

� B(xu) N
�
Auxu � �Af xf � �

2
e

�
(7.10)

which can be rearranged using equation (A.5) as

� B(xu) N
�
xu � �(AT

u Au)�1AT
u Af xf � �

2
e (AT

u Au)�1
�

(7.11)

which is a multivariate Gaussian distribution, bounded to a hypercube4 in

xu-space.

7.2.3 Sampling bounded Gaussians

The n-dimensional multivariate Gaussian distribution,

N(� � ��C) �
1

(2	)
n
2 �C�

1
2

exp
��1

2 (� � �)TC�1(� � �)
�

(7.12)

3In fact the structure of (AT
u Au)�1AT

u Af (see eq. 7.11) is such that the (�)f partition need only
contain the nearest k samples to each side of the (�)u partition.

4This is for a perfect quantiser; more generally it will be a hypercuboid region.
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is very widely used. Since it can be expressed as a linear transformation of

multiple independent univariate Gaussians (eq. A.5), samples can be drawn

from it by drawing a vector � of n independent samples from a zero-mean,

unit variance Gaussian distribution, then applying the transformation

� � UT�� � (7.13)

where the matrix U such that UTU � C is found by a matrix square-root

method such as the Singular Value Decomposition or the Cholesky decom-

position (see e.g. [62, p. 478]). The univariate Gaussians can be sampled

very efficiently by transformation of rectangularly distributed samples using

the Box-Muller method (see e.g. [155]).

When bounds are introduced, however, it becomes surprisingly difficult

to draw samples efficiently. We now look at how some of the sampling

methods discussed in �3.4 can be applied to the problem.

7.2.3.1 Univariate bounded Gaussians

Rejection sampling The most obvious method for producing samples from

a bounded Gaussian distribution is to draw samples from the full distribu-

tion, and reject those which are outside the bounds. The expected value

of the acceptance rate will equal the proportion of the distribution which

lies within the bounds:5

E(�) �
� bmax

bmin

N(� � 0� 1) d� (7.14)

Clearly this will become unacceptably small if the range (bmin� bmax) lies out

in the tails of the distribution. In this case � can be doubled simply by

exploiting the symmetry of the Gaussian distribution to remap samples from

the other side of the mean which would otherwise be rejected.

For the case where the range is (bmin��) and bmin � 0 (or the equivalent

range in the negative tail of the distribution), Marsaglia [138] generates pro-

posals from the tail of a Rayleigh distribution, then uses rejection sampling

(�3.4.2) to correct it to the required Gaussian. The expected acceptance

rate exceeds that of equation (7.14) (with remapping) for bmin � 0�65, and

approaches 1 as bmin � �.

5Without loss of generality, we consider only the zero-mean Gaussian distribution with unit
variance; simple transformations will give distributions with other means and variances.



122 Quantisation distortion

Robert [162] improves on this method by using an exponential proposal

distribution. He then considers the case where bmax � �, providing two

rejection sampling algorithms, suitable for different ranges of bmin and bmax,

such that a reasonably high expected acceptance rate is obtained for any

combination. Geweke [70] presents another variation, using a combination

of uniform, exponential, normal and half-normal rejection sampling.

Inverse cumulative distribution function A conceptually simpler approach

is that of �3.4.1: to use the inverse of the c.d.f., ��1(�), to transform a sam-

ple from a bounded uniform distribution to one from the required bounded

Gaussian as follows:

u � U(u � 0� 1) (7.15)

� � ��1
�
�(bmin)� u

�
�(bmax)� �(bmin)

��
(7.16)

An approach similar to this is used by Kotecha & Djurić [117]. The problem

with this is that, for the Gaussian distribution, �(�) and ��1(�) are not avail-

able analytically, so they must be approximated. There are well established

algorithms for doing this, but to obtain a precise approximation requires a

great deal of computation. Unfortunately, when the bounded region lies in

the tail of a Gaussian distribution, �(bmax)��(bmin) can become very small,

so great precision is needed.

7.2.3.2 Multivariate bounded Gaussians

We have seen above that proposing from the unbounded distribution and

simply rejecting samples outside the bounds is inefficient. It becomes even

more so as the number of dimensions increases, as the bounded region be-

comes a progressively smaller proportion of the parameter space.

If equation (7.13) is used to transform the multivariate Gaussian into

multiple independent ones, the cuboid forming the bounds must be trans-

formed as well. Unless C is purely diagonal, this will result in a bounding

region for � with edges which are not parallel to the axes, so the bounds

on each element of � will be dependent on the values of the other elements,

preventing independent sampling.
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Figure 7.6. Contour map of the p.d.f. of a bivariate Gaussian distribution:
The heavy line shows a possible path for a Gibbs sampler to take between
points A and B.

Gibbs sampling One way to produce samples from N(� � ��C) is to use

a Gibbs sampler, in which each element is sampled from its full conditional

distribution, in this case a truncated univariate Gaussian. This method is

separately suggested by Geweke [70], Robert [162] and Kotecha & Djurić

[117]. For this problem, it can be implemented straightforwardly by making

the partition (�)u in equation (7.6) contain a single element. Equation (7.11)

then becomes the required full conditional distribution.

There is a potential drawback with this method: as discussed in �3.5.3.2,

if, in an MCMC scheme, some variables are highly correlated, convergence

will tend to be slow unless those variables are sampled jointly. Hence, if

the off-diagonal elements of C are significant, convergence may be slow.

Figure 7.6 illustrates the problem in two dimensions: the sampler can only

move parallel to the axes, and will tend to stay in relatively high probabil-

ity regions, so it cannot move between points A and B quickly. In higher

dimensions, this lack of mobility becomes more serious.
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Figure 7.7. Gaussian windowing of a Gaussian distribution: (dashed) the
target Gaussian (without bounds), (dotted) the windowing Gaussian, and
(solid) the resulting Gaussian from which samples will be drawn. The verti-
cal lines show the bounds.

Gaussian windowing In order to be able to sample multiple components

jointly, we now describe an alternative technique, which does not appear to

have been suggested elsewhere.

As discussed earlier, direct rejection sampling using the unbounded dis-

tribution is very inefficient if most of the probability mass lies outside the

bounds. Multiplying the (unbounded) target Gaussian distribution by an-

other multivariate Gaussian, centred within the bounds, results in a distribu-

tion which is related to the target distribution but has a much greater prob-

ability mass within the bounds. This is illustrated, for the one-dimensional

case, in Figure 7.7. Equation (A.1) shows that the combined distribution

is itself a multivariate Gaussian:

N(� � �c�Cc)� �� �
Combined

� N(� � ��C)� �� �
Target

(unbounded)

N(� � �w�Cw)� �� �
Window

(7.17)
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where �w �
bmax�bmin

2 , Cw � � diag(bmax � bmin), bmax and bmin are vectors

containing the upper and lower bounds on each element, � is termed the

window factor, and Cc and �c can be determined as shown in �A.1.

Independent samples can be drawn from this combined distribution,

and rejection sampling can be used to enforce the bounds. The bias intro-

duced by the windowing function can then be removed by an independence

Metropolis-Hastings sampler step (�3.3.1.2) with acceptance probability

�
�
� � ��

�
� min

�
1�

N
�
�� � ��C�

N(� � ��C)
N(� � �c�Cc)
N
�
�� � �c�Cc

�� (7.18)

which simplifies through cancellation to

� min

�
1�

N(� � �w�Cw)
N
�
�� � �w�Cw

�
�

(7.19)

The tuning parameter, �, varies the width of the windowing Gaussian and

hence controls the trade-off between the acceptance rates in the rejection

sampling step and in the independence sampler.

In general, the acceptance rate falls as the dimension of � increases, so for

a given acceptance rate, the number of elements of x which can be sampled

jointly will be limited. For the quantisation removal problem, experimenta-

tion has shown that joint sampling of five elements is acceptably efficient.

The structure of the covariance matrix (eq. 7.11) is such that nearer ele-

ments tend to have higher correlation, so sampling subblocks xu of consec-

utive samples should give fastest convergence. If fixed subblocks were used,

samples on the subblock boundaries would never be sampled jointly with

those in the adjacent subblock. This problem can be avoided by applying a

random offset to the subblocking on each iteration, as described in �7.2.6.

Shephard & Pitt [172] use an alternative approach to random subblocking,

which they call stochastic knots.

7.2.3.3 Comparison for synthetic AR data

The performance of the Gibbs sampling and Gaussian windowing methods

was compared for a simple quantisation distortion problem. An AR(2) sig-

nal was synthesised, with poles at 0�99ej��15
180 and i.i.d. Gaussian excitation
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Figure 7.8. Comparison of bounded Gaussian sampling algorithms: (dotted)
univariate Gibbs sampler, and (solid) windowed Gaussian method, jointly
sampling five consecutive components. The plot shows performance in re-
ducing quantisation distortion in a synthetic AR(2) signal.

of unit variance. The signal was quantised with a step height of 20, which

introduced quantisation distortion 9.5 dB (r.m.s.) below the signal. Single

blocks of 2048 samples were restored, with the AR model order fixed at 2.

To avoid end effects without the need to change the conditioning from that

described in �7.2.2 or to use exact likelihood methods, two samples before

and after the block were made available from the unquantised signal. Fifty

runs of 500 iterations were made with each of the algorithms, each run with

a different block from the signal. In the windowing algorithm, � was 10,

and blocks of five consecutive samples were sampled jointly.

Figure 7.8 shows the mean distortion level across the 50 runs of each

algorithm. It can be seen that the windowing algorithm exhibits much faster

convergence. The total computation time was also significantly less than for

the Gibbs sampling algorithm.
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7.2.3.4 Discussion

On the basis of this test, the joint sampling algorithm will be used for the

remainder of the experiments.

The efficiency might be improved further by changing the windowing

function. A single Gaussian is not very close in shape to the required

rectangular window. A closer fit could be achieved by using a mixture of

Gaussians, for example equispaced Gaussians across the bounded region.

A smaller value of � could then be used, lowering the rejection rate. The

drawback of this approach is the additional complexity involved in sam-

pling from the mixture and evaluating its p.d.f. for use in the calculating the

acceptance probability (see e.g. [30, 79]).

An alternative approach would be to correct from the windowed dis-

tribution to the desired distribution using rejection sampling. Rather than

using a sufficiently large scaling factor for the envelope distribution to dom-

inate the desired distribution (see �3.4.2), which could lead to very low ac-

ceptance rates, a lower value could be chosen and the discrepancy corrected

through a Metropolis-Hastings step. This is called a pseudo-dominating

suggestion [172], and forms a rejection sampling chain [182].

7.2.4 Blocking and overlap

As in �4.7 and Chapter 6, the signal model assumes stationarity, so time-

varying audio signals must be processed in short blocks.

Since the AR model is being used to reconstruct the signal, the blocks

must be contiguous and there must not be discontinuities at the boundaries.

As in �4.7.5, this can be ensured by using the final k samples of the previous

block as the initial conditions, x0, for the current block when sampling for

k, a(k) and �2
e . When sampling x, k samples are used from either side of the

interpolation point, regardless of block boundaries.6

6In the first and last blocks of the signal, these samples will not be available. This could be
overcome by treating the end blocks as a special case for which the exact likelihood is used,
together with one-sided conditioning in equation (7.11). The approach taken here is simply
to use the values from y, the unprocessed signal. The end-effects caused by this should be
negligible when processing long audio signals.
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7.2.5 Model mixing vs. Gibbs restoration

Estimating x from the sampler output uses all possible autoregressive mod-

els, weighted according to their posterior probability, to give a posterior

mean estimate for x. Experience from audio interpolation applications,

however, suggests that this may not be the best approach (see e.g. [146,

158]).

For an AR model with zero-mean excitation, the interpolant with max-

imum likelihood, which will also be the MAP estimate in this case, will be

the one which minimises the excitation. This leads to the choice of inter-

polants which have excitation atypical of the surrounding signal—the ex-

citation variance drops towards the centre of the interpolated region [87,

Figure 5.8]. Using the value of the current interpolant at the final itera-

tion will lead to a more typical signal with the excitation variance constant

across the block. This “Gibbs restoration” [148] will be measurably worse

in terms of mean squared error, but may sound better.

7.2.6 Algorithm

There are two parts to Algorithm 7.1: sampling x to reconstruct the signal

and sampling the parameters of the AR model: k, a(k), �2
a and �2

e . The latter

is done in the same manner as Algorithm 4.1. All variables and distributions

within the b loop refer to the current block, which contains nx samples. The

value v is a random offset applied to the subblocking (see p. 125); the for

loop sets s to the starting point for each subblock.7

To allow direct comparison with the algorithm of �7.3.6, where the rest

of the sampler is expensive to compute, x is sampled five times each itera-

tion. Since they are relatively quick to compute, eight reversible-jump moves

are proposed each iteration. For stand-alone use, better mixing would be

produced if each step was performed fewer times each iteration.

For fast convergence, the initial values should be typical of the poste-

rior distribution [73]. In these experiments, initial values of a(k), �2
a and �2

e

were generated using the quantised signal, y, by sampling from their full

conditionals for a few iterations. The initial value of k was set arbitrarily;

an atypical value was chosen in order to demonstrate the model selection

capabilities of the method.

7To avoid clutter, Algorithm 7.1 is slightly simplified from that used in practise, which en-
sures that the first and last elements of x are sampled regardless of the value of v.
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Algorithm 7.1. Quantisation reduction using an AR model.

Choose initial values
for i = 	1 � � � number of iterations


for b = 	1 � � � number of signal blocks

— (Sinusoidal moves (Algorithm 7.2) performed at this point)

for g = 	1 � � � number of passes through x per iteration

v � 	0� 1� � � �nu

for s = (v � 1) to nx step nu

u � 	s� � � � s� nu � 1

xu � p(xu � xf � k� a(k)� �2

e � y)
end for

end for
for r = 	1 � � � number of reversible-jump moves per iteration


k� � J(k� � k)
z � U(0� 1)
if z � �(k � k� � �2

a � �
2
e � x)

k � k�

end if
a(k) � p(a(k) � k� �2

a � �
2
e � x)

�2
a � p(�2

a � a(k))
�2

e � p(�2
e � k� a(k)� x)

end for
end for

end for

7.2.7 Results

7.2.7.1 Audio signal

The quantised version of the piano signal (Track 10, see �7.1.3) was split

into blocks of 1024 samples, and the sampler run for 200 iterations. Ini-

tial values were x � y and k � 6; the remainder of the parameters were

drawn from their full conditionals. kmax was set to 50. A Monte Carlo esti-

mate, x̂, of the signal was made using the final 100 iterations, in which the

distortion was reduced by an average of 9.9 dB (r.m.s.). As can be heard

on Track 12 on the accompanying CD (see Appendix C), this is a clearly

audible improvement.

Figure 7.9 shows the signal together with, for each block, estimates of

p(k � y) and p(�e � y) and the distortion level before and after restoration.

Figure 7.10 shows part of the signal in which the quantisation distortion

was very noticeable. It can be seen that the error signal is much smaller
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e AR
k� a(k)
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Q(�)

Figure 7.11. Modelling of quantised audio using sinusoidal + AR model: y is
the observed, quantised signal, x is the unquantised audio signal we aim to
reconstruct, s is the sinusoidal component, w is the residual autoregressive
component, and e is the excitation process.

after restoration. For the part shown, which is typical of the quieter blocks,

an improvement of 15 dB (r.m.s.) was achieved.

7.2.7.2 Gibbs restoration

As discussed in �7.2.5, in some audio applications, simply using the value of

x from a single iteration has led to better sounding restorations. Track 13

is x from the final iteration of the run. It does not sound as good as Track

12, and it reduces distortion by only 7.6 dB (r.m.s.).

7.2.7.3 Effect of model order

Model orders 2 � k � 16 were observed in the sampler output. Similar

experiments, but using fixed model orders, were performed to show the

importance of model selection.

If the signal was undermodelled by using a second order model through-

out, the improvement was only 7.5 dB (r.m.s.) and noise can be heard in

the restored signal (Track 15).

Overmodelling, by using a fixed order of 40 (Track 14), led to disturbing

artefacts, similar to musical noise (�4.7.2), where some distortion elements

were modelled as if part of the signal.

7.3 Sinusoids + AR model

As discussed in �7.1.3, the audio signals which exhibit the most noticeable

quantisation distortion tend to be those which contain strong sinusoidal

components. Hence, a possible improvement to the signal model is to model

these deterministic components explicitly. Figure 7.11 shows a model which
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does this. The residual, stochastic component, w, is modelled as autore-

gressive, as before:

x � w � s (7.20)

e � A w � w1 �W a (7.21)

A similar source model has previously been used for audio interpolation [87,

�5.2.3] and in mixed-spectrum estimation (see e.g. [113]).

7.3.1 Sinusoidal model

7.3.1.1 Basis function representation

Within each block of the signal, the sinusoidal component, s, is modelled

as a weighted sum of sinusoidal basis functions.8 We use pairs of basis

functions in quadrature to represent arbitrary phases:

g��i�t � sin
�
��i�t

�
g�i�t � cos

�
��i�t

�
(7.22)

If the weights, or sinusoidal coefficients, are contained in c, then this takes

the form of the general linear model:

s � Gc (7.23)

where G is formed from the basis functions:

G �

�
� � � � � � �

g��1� g�1� � � � g�
nc
2 �

� � � � � �

�
�� (7.24)

7.3.1.2 Choice of basis frequencies

The choice of basis frequencies 	��i�
 and phases 	��i�
 can be made by

a variety of means. We propose a method based on the subset selection

techniques developed in Chapter 5:

� A list of candidate frequencies is drawn up. A quick way to do this

is to perform a Hanning-windowed FFT on the quantised block and

pick the nc
2 frequencies with the highest energy.

8The sinusoidal components are estimated independently for each block. Hence all param-
eters mentioned here refer to only one block. For simplicity, this is not reflected in the
notation.
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� A binary indicator variable, �i, is associated with each pair of basis

functions, such that when �i � 0, both basis functions with frequency

��i� are removed from the model.

� The indicators, �, are treated as unknowns and incorporated into the

posterior distribution.

This method constrains the sinusoids to match FFT bin frequencies in or-

der to allow a fast subset selection algorithm to be used. Continuously vari-

able frequencies could be allowed by including the frequencies in the model

as unknown parameters. Andrieu & Doucet [7] use a mixed Metropolis-

Hastings approach, consisting of independence sampler moves with pro-

posals based on the FFT together with random-walk Metropolis moves to

explore more locally. Djurić, Godsill, Fitzgerald & Rayner [51] present an

alternative reversible-jump strategy, using predictive densities to allow the

use of improper priors. In both cases, the goal is spectrum analysis, so ac-

curate frequency estimation is important. This is obtained at the cost of

much slower convergence, as the model is highly nonlinear in the frequency

parameters. In the quantisation noise application, however, we are only in-

terested in the reconstructed signal; any errors due to discrete frequencies

will be incorporated into the AR model.

A similarly approximate approach has been used for audio interpolation

[87, �5.2.3], but using a deterministic algorithm with a fixed number of

sinusoids.

Picking frequencies from the FFT of the quantised signal seems a rea-

sonable approach, as although the quantisation process adds many more

sinusoidal components, it does not change the frequencies of those present

in the original signal. It could, however, affect the amplitudes and phases,

so these must be estimated as part of the restoration process.

7.3.2 Likelihood

The likelihood for the new signal model follows straightforwardly from

equations (2.34), (7.20) & (7.23):

p
�
x � �� c�� k� a(k)� �2

e

� � p
�
x1 � �� c� � k� a(k)� �2

e � x0
�

(7.25)

� pw
�
x�G�c� � k� a(k)� �2

e

�
(7.26)

� N
�
A(k)x� A(k)G�c� � 0� �2

e Ine

�
(7.27)
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where c� contains the parameters relating to basis functions currently in-

cluded in the model.

7.3.3 Priors for new parameters

7.3.3.1 Prior for sinusoidal coefficients

In choosing a prior for the sinusoidal coefficients, c, there are a number

of aspects to consider:

� For subset selection to be possible, with an appropriate penalty for

more complex models, a proper prior must be used (see �2.1.6.3).

� Since nothing is known about the phase of the signal, the priors should

be circularly symmetric.

� A Gaussian prior, p(ci) � N
�
ci � 0� �2

c

�
, has the advantage of being

conjugate with the likelihood (eq. 7.27).

� Audio signals tend to exhibit a spectrum of shape 1��, i.e. equal en-

ergy per octave. Hence it might be reasonable for the variance of the

priors on 	ci
 to be inversely proportional to 	��i�
.

� Since most instruments produce harmonic signals (see e.g. [201]), it is

reasonable to expect the amplitudes of sinusoids at harmonically re-

lated frequencies to be related. Unfortunately this does not mean that

the coefficients will be correlated, since the phases of the harmonics

may differ.

For simplicity, we leave the 1�� prior for future research, and choose an

i.i.d. Gaussian prior,

p(c) � N
�
c � 0� �2

c Inc

�
(7.28)

The prior variance could either be fixed or treated as a hyperparameter and

estimated as part of the model. Experiments using an inverse Gamma ap-

proximation to the Jeffreys’ prior (as used for �2
a ) as a hyperprior were dis-

appointing, with �2
c tending to oscillate.

Therefore we choose to use a fixed value for �2
c in each block. We

have prior knowledge that the amplitude of any sinusoidal component is

unlikely to be much larger than that of the signal. In the absence of any
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other knowledge, the prior should have reasonably even support over this

plausible range, and tail away outside it. We hence choose to make �2
c pro-

portional to the signal power in the block:

�2
c �

�

ny
yTy (7.29)

where � is a user-specified constant. A value � � 2 has been found to be

reasonable in experiments.

Although this is, strictly speaking, a data-dependent prior, it has the

virtue of scale-independence—i.e. the prior will have the same effect on

blocks containing the same signal at different levels. When modelling de-

caying notes, this seems a sensible requirement.

7.3.3.2 Prior for indicators

As in the previous subset selection problem (�5.4.4), independent Bernoulli

priors are used for the indicators:

p(�i) � ��i � (1� �)(1� �i) (7.30)

such that � � 1 would force all sinusoids to be included and � � 0 would

disable them. For current experiments, � � 0�5.

There is room for improvement here. The harmonic nature of the signal

could be taken into account. For example, joint priors could be used for

the indicators of harmonically related sinusoids, such that the presence of a

sinusoid of frequency � could increase the probability of inclusion of sinu-

soids at its harmonic frequencies (2�� 3�� � � � ) and at frequencies of which it

is a harmonic (1
2��

1
3�� � � � ). Also, sinusoids are likely to persist over several

blocks. This knowledge could be reflected by making the prior dependent

on the indicator values in adjacent blocks.

7.3.4 Sampling the new parameters

The sinusoidal coefficients and associated indicators can be sampled in a

very similar manner to the nonlinear model parameters and indicators in

Chapter 5. Again, we expect the indicators and the associated parameters

to be highly correlated, so they are sampled jointly. Since the basis functions

are orthogonal, there is little advantage to sampling more than one indicator
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at a time, so we partition such that �u is just one indicator, and Gu and cu

contain its two associated basis functions and parameters. If �u � 1 then

c�u � cu and G�u � Gu, otherwise c�u and G�u are both empty.

The joint sampling is again performed by the composition of two steps:

�u � p(�u � x��f � c�f
� k� a(k)� �2

c � �
2
e ) (7.31)

c�u � p(c�u � x��� c�f
� k� a(k)� �2

c � �
2
e ) (7.32)

where the first step is not conditional on cu.

7.3.4.1 Sampling �u

The distribution required for step (7.31) can be obtained by marginalising

c�u from the full conditional for �u:

p(�u � x��f � c�f
� k� a(k)� �2

c � �
2
e )

�

�
p(�u � x��f � c�f

� k� a(k)� �2
c � �

2
e ) p(c�u � �2

c ) dc�u (7.33)

Using Bayes’ theorem to express this in terms of the likelihood and priors,

then performing the integral and neglecting terms which are independent

of �u (see �B.3) gives

� p(�u)
1

�
nc�u
c

"��Ccc�u

�� exp
�

1
2�4

e
eT

f A(k)G�uCcc�u
GT

�u
A(k)Tef

�
(7.34)

where nc�u
is the number of basis functions which are included, either zero

or two, depending on the state of �u, and

ef � A(k)(x�G�f
c�f

) (7.35)

Ccc�u
�
�

1
�2

e
GT

�u
A(k)TA(k)G�u �

1
�2

c
Inc�u

��1
(7.36)

Hence step (7.31) can be accomplished by evaluating equation (7.34) (�1)

and the corresponding expression with (�)u empty (�0) and setting �u to one

with probability 	1
	0�	1

, or to zero otherwise.
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7.3.4.2 Sampling c�u

Sampling step (7.32) requires the full conditional distribution for c�u. This

is derived in �B.3 from the likelihood and prior as

p
�
c�u � x��� c�f

� k� a(k)� �2
c � �

2
e

� � N
�
c�u � �cc�u

�Ccc�u

�
(7.37)

where

�cc�u
�

1
�2

e
Ccc�u

GT
�u

A(k)Tef (7.38)

Sampling from this is straightforward. It is also easy to sample jointly the

whole of c�, i.e. the coefficients of all the sinusoidal terms that are included

in the model. To do this, the (�)u partition is made to contain all n� active

model terms, and (�)k is left empty.

7.3.5 Blocking, overlap & conditioning

As before, time-varying audio signals are split into short blocks, within each

of which they are treated as stationary. Since the FFT is performed on each

block, computation is minimised by using block lengths which are a power

of two. Blocks of length 1024 samples were used for the experiments de-

scribed in �7.3.7.

It is necessary to enforce continuity across the block boundaries. For

frequency domain signal processing methods, this can be achieved by us-

ing blocks with 50% overlap, and windowing the reconstructions with a

window function which reduces to zero at the block boundaries. The out-

put is then generated by summing the two windowed restorations of each

sample and multiplying by a gain compensation function to ensure constant

gain despite the windowing [87, �6.1]. This approach is also taken here,

using Hanning windows.

As before, the signal is reconstructed by sampling x conditional on the

model parameters, constrained to the region Q�1(y). This is equivalent to

sampling the AR component, w, constrained to the region Q�1(y)�s, where

s is the sinusoidal component.

As in �7.2.4, when sampling w, k values from the previous block ap-

pear in the conditional likelihood as w0. Both w0 and the first k values of
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Algorithm 7.2. Additional moves for AR + sinusoids model: these moves
are incorporated into Algorithm 7.1.

for u = 	1 � � � nc
2 


�u � p(�u � x��f � c�f
� k� a(k)� �2

c � �
2
e )

c�u
� p(c�u

� x��� c�f
� k� a(k)� �2

c � �
2
e )

end for
c� � p(c� � x��� k� a(k)� �2

c � �
2
e )

�2
c � p(�2

c � c�)

w after the end of the current block are used to provide boundary condi-

tions when sampling w, helping to ensure continuity of x across the block

boundaries. Simply using the values of w from the adjacent blocks would

result in discontinuities as (before the windowing procedure) s has sudden

discontinuities at the block boundaries. Hence these values of w are pro-

vided by extending s from the current block to cover this extra range and

subtracting it from x (which is continuous).

If the adjacent values of xt are taken from the end of the last-but-one

block and the beginning of the next-but-one block, i.e. from the blocks

which abut the current one but do not overlap with it, then there is no

interaction between the odd and even blocks, so they can be computed in

parallel. This approach is similar to the checker-board updating scheme

discussed by Roberts & Sahu [163]; their analysis suggests that it should

not slow convergence.

7.3.6 Extended algorithm

Algorithm 7.2 shows the new sampling steps which are added to the algo-

rithm of �7.2.6. The sampling steps for k, a(k), �2
a and �2

e are unchanged

from �7.2.1, except that now they refer to w � x � s, rather than directly

to x. The steps of �7.2.2 require a simple modification for use in recon-

structing w: the bounds must now be offset by �s, as each sample in the

reconstructed signal is bounded to (wt � st) � Q�1(yt).

Because sampling the indicators, �, each iteration is a relatively expen-

sive process, several complete scans are made through w per iteration, so

that it does not limit the convergence rate. In the experiments which follow,

five scans are made per iteration.
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Figure 7.12. Evolution of � in block 40: black pixels represent �i � 1.

7.3.7 Results

7.3.7.1 Audio signal

The new algorithm was applied to the same quantised signal as used in

�7.2.7 (Track 10). It was again processed in blocks of length 1024 samples,

but this time with 50% overlap. Thirty candidate frequencies were chosen

in each block, so nc � 60. Initially, all the indicators were set to one, so all

30 sinusoids were included. Other initial values were as before.

The sampler was again run for 200 iterations. Figure 7.12 shows the

evolution of � in a typical block over the course of the run. It can be seen

that it converges quickly to a small number of sinusoids.

A Monte Carlo estimate, x̂, of the signal was made using the final 100 it-

erations, in which the distortion was reduced by an average of 11 dB (r.m.s.),

a slight improvement over the plain AR algorithm. It does not, however,

sound noticeably different (Track 16).

Figure 7.13 shows the equivalent data to that in Figure 7.9, along with

the estimated posterior distribution of the number of sinusoids. It can be

seen that generally lower order AR models are used, with lower excitation

variance, suggesting that the sinusoids have captured much of the struc-

ture of the signal.

Figure 7.14 shows the same part of the signal as Figure 7.10. Distortion

is reduced by 17 dB (r.m.s.), 2 dB better than with the AR algorithm.

7.3.7.2 Model selection

To show that it is important not to use too many sinusoids, the sampler

was rerun on the same signal with � � 1, so that all 30 candidate sinusoids
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were included all the time. The performance seems very good: distortion

was again reduced by 11 dB (r.m.s.). However, listening to the result (Track

17) reveals that there are now random, short-duration tones in the back-

ground, i.e. musical noise.

7.4 Discussion

This chapter has introduced quantisation distortion and the problems it can

cause in audio recordings, then shown how they can easily be avoided by

the use of dither and lamented the widespread ignorance of dither which has

resulted in quantisation distortion marring many recordings.

It then considered the problem of restoring a coarsely quantised signal

using an AR signal model. This required samples to be drawn from a trun-

cated multivariate Gaussian distribution. Existing methods, based on uni-

variate Gibbs sampler draws, were found to lead to slow convergence, so

a new multivariate method was developed. Undermodelling and overmod-

elling were both found to significantly degrade performance.

Sinusoidal components were added to the model to attempt to improve

performance, on the basis that it is signals with strong sinusoidal compo-

nents which tend to produce noticeable quantisation distortion. Using too

many sinusoids was found to produce musical noise; an approximate, but

rapidly converging, subset selection method was developed to avoid this.

The sinusoid + AR model produces only slightly better restorations than

the plain AR model, but has much potential for further improvement: block-

to-block persistence can easily be incorporated into the prior structure, and

harmonic relationships and 1�� spectral shapes are other possibilities.
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Conclusions and further research 8

8.1 Conclusions

With the increase in available computing power it is becoming possible to

address previously intractable audio restoration problems by using model-

based statistical techniques.

This dissertation has explored the application of Bayesian techniques and

Markov chain Monte Carlo methods to audio restoration problems, and

made some contributions to MCMC model selection and sampling meth-

ods along the way.

In Chapters 4 & 5, it was found that exploiting the analytic properties

of a model to design joint reversible-jump or Gibbs sampler moves can lead

to much better mixing of the Markov chain, and hence faster convergence.

These new MCMC model order and subset uncertainty methods are

straightforward to incorporate into MCMC frameworks for solving other

problems—in �4.7, model order uncertainty was added to an existing noise

reduction algorithm, and in Chapters 6 & 7 variable AR model orders were

used in new algorithms.

In �4.7 and Chapter 7, it was shown to be important to the avoidance

of audible artefacts to allow model orders to vary over the duration of an

audio signal.

In Chapter 6, a previously-proposed cascade AR-NAR model for non-

linearly distorted audio was reimplemented in a fully Bayesian manner. The

MCMC methods of Chapters 4 & 5 were used to allow for model order

uncertainty in the linear model and to perform subset selection in the non-

linear model,

The approach was then extended such that long, time-varying audio sig-

nals could be processed, with nonlinear model estimation being performed

jointly across all the blocks.
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In Chapter 7, the problem of restoring quantised audio was addressed

for the first time, with promising results. This was greatly accelerated by

the development of a new method for drawing samples from a truncated

multivariate Gaussian distribution. The new method results in significantly

faster convergence than Gibbs sampler-based methods when there is strong

correlation between the different components.

8.2 Suggestions for further research

8.2.1 Model order uncertainty

The reversible-jump model order sampling approach of Chapter 4 does not

currently enforce the stability of the AR model. This has not proved to be

a problem when the algorithm was used in �4.7 or Chapters 6 & 7, but

could be in other applications.

Whilst it is simple to use rejection sampling to avoid unstable parameter

values, there is a problem with the marginalisation of a(k) when calculating

the acceptance probability—it is now necessary to integrate only over the

stable region, which is difficult. However, the only effect on the acceptance

probability is to scale the numerator by �(k�� �2
a ) and the denominator by

�(k� �2
a ). Although � is difficult to calculate, it is simply a scalar and a

function only of the model order, which is discrete and bounded, and one

other variable. Hence it might be practicable to precalculate it for each value

of k and a range of values of �2
a (in which it is probably smooth), and use

these to produce interpolated values for use in the simulation.

With stability enforced, it would then be straightforward to incorporate

the p(x0 � k� a(k)� �2
e ) terms necessary to use the exact likelihood.

Another possible enhancement would be to relax the i.i.d. Gaussian as-

sumption on the excitation. Sinusoidal or pulse-train excitation could be

incorporated using the techniques of �7.3, or impulses could be allowed

using indicators in a sampling scheme similar to that of Chapter 5 [88].

8.2.2 Nonlinearly distorted audio signals

As discussed in Chapter 6, although the AR-NAR model selection scheme

and restoration algorithm works well on audio data which has been dis-

torted by an NAR process, it does not significantly improve any of the
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real-world distorted audio signals on which it has been tried. This may be

because much larger NAR models are needed than are practicable with cur-

rent computing hardware, or because an NAR process is not a good model

of real distortion-causing systems.

Before writing off the NAR model all together, it might be worthwhile

to perform input/output NAR modelling of typical audio equipment, such

as tape machines and disc cutting systems. Time-alignment could cause dif-

ficulty here, as record and replay speeds are never completely steady.

The model could be improved by incorporating specialised nonlinear

terms based on physical models of the distortion-causing process. For ex-

ample, the geometry which causes tracing distortion in records is well un-

derstood [42, 43, 123, 159, 185] and can be readily simulated; parameter

estimation (linear velocity and cutting and playback stylus radii) is, however,

difficult, as the model is no longer linear-in-the-parameters.

An extra, linear stage—either AR or MA—could be added, after the non-

linear stage, to model the linear response of the playback mechanism. Both

tape and record players include equalisation in the playback circuitry. At

present, this must be modelled as part of the NAR model; separating it out

could allow a smaller, simpler NAR stage. With this three stage model (first

suggested by Mercer [141]), it might be possible to replace the NAR stage by

a memoryless nonlinearity for simple problems such as optical soundtracks.

Noise added to the observed signal could prevent the AR-NAR algo-

rithm from finding the right NAR model. Incorporating white Gaussian

observation noise explicitly might help. Impulsive noise could also be al-

lowed, as discussed in �8.2.1.

The technique developed for joint estimation of a channel model over

many blocks of time-varying audio data (�6.5.1) could be useful even with

purely linear channel models, for applications such as reverberation mod-

elling and removal.

8.2.3 Noise reduction

The artefacts of the model-based noise reduction process could be further

reduced, as suggested in �4.7.7, by introducing inter-block dependence into

the priors on the model order and possibly the parameter values and ex-

citation variance.

A more elaborate approach would be to use reversible-jump change-
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point detection methods (see e.g. [177]) to adapt the block lengths and

placements so that abrupt changes in the signal always occurred on block

boundaries. Much greater inter-block smoothness could then be enforced

where change-points were not found.

Both in noise reduction and quantisation removal applications, when the

model order is too high, the AR model tends to position poles such that they

model high frequency noise or distortion components. Audio signals tend

to exhibit a 1�� spectral shape; incorporating this knowledge into the prior

on a(k) might be beneficial. This may be possible, while retaining the multi-

variate Gaussian prior structure, through an adaptation of the smoothness

priors of Kitagawa & Gersch [114].

It would be simple to incorporate the sinusoidal signal components of

�7.3 into the noise reduction framework, which might lead to improved

performance on signals with strong sinusoidal components.

8.2.4 Quantisation distortion

Although approximate, the sinusoidal model of �7.3 has the advantage that

it would be relatively easy to incorporate inter-block dependence into the

sinusoidal indicators, �, such that persistent sinusoids are encouraged but

those which appear in only a single block, which are more likely to be mu-

sical noise, are discouraged.

It would be interesting to see whether full reversible-jump sinusoidal es-

timation schemes (such as [7] or even [201]) improve the performance of

the quantisation removal algorithm (at the expense of speed).

The windowing method for sampling truncated Gaussians could be mod-

ified, as suggested in �7.2.3.4, to use rejection sampling chains [182]. This

may allow more components to be sampled jointly, and hence faster con-

vergence. Another approach which should be tried is the Geweke-Haji-

vassiliou-Keane simulator [96], which again uses independence sampling,

but with a different proposal distribution.

Quantisation distortion is generally most noticeable in the quiet parts

of a signal, when the signal is quite near the noise floor. Performing noise

reduction jointly with quantisation removal could therefore result in bet-

ter restorations.

As discussed in �7.1.4.1, dither is essentially added noise. It would be

a very challenging task to try to improve signals which have been correctly
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dithered to a low resolution—although the statistics of the dither component

may be known precisely, the dither is usually non-Gaussian, and so would

be difficult to integrate out.

8.2.5 Clipped signals

To restore a clipped signal, those parts of the signal which exceed the clip-

ping threshold must be interpolated. This is a very similar problem to that

of Chapter 7: the interpolant must be constrained to be above the clipping

threshold, so draws must be made from a multivariate Gaussian distribu-

tion which is truncated on one side.

The problem differs from quantisation removal in that quite long sec-

tions may need to be interpolated—possibly many tens of samples. Hence

the deterministic component provided by sinusoidal modelling is likely to

prove quite important.

Signals which have been clipped in the analogue domain may exhibit

gentle saturation before they reach the clipping level. It might therefore

be sensible to incorporate a memoryless nonlinearity into the model before

the clipping stage.

8.2.6 Other suggestions

It has become very clear in this research that r.m.s. distortion measurements

do not correlate at all well with human perception. Although there has

been much research effort put into psychoacoustic modelling for perceptual

coding schemes (see e.g. [41]), no simple measure is widely used to objec-

tively evaluate distortion.

Bayes’ theorem (eq. 2.3) is a model of a learning process, and hence

Bayesian methods are highly suited to sequential learning, in which Bayes’

theorem can be applied repeatedly to update parameter estimates on the

basis of each new sample. Sequential Bayesian estimation using MCMC

(see e.g. [129]) is likely to be a growth area. The noise reduction, quan-

tisation removal and declipping algorithms could all be reimplemented in

such a manner to provide useful real-time tools once sufficient computing

power becomes available.
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Manipulation of Gaussians A
This appendix presents some useful results for the manipulation of multi-

variate Gaussian distributions.

A.1 Product of Gaussians

If a conjugate Gaussian prior is used in a model with Gaussian likelihood,

the expression for posterior will include a product of these two Gaussians.

For the univariate case, Box & Tiao [24, �A1.1] show that this product

is proportional to a single Gaussian; we state here the general, multivariate

result, without neglecting constants of proportionality, as these prove impor-

tant in model order selection (Chapter 4) and subset selection (Chapter 5).

It can be derived straightforwardly by multiplying out and completing the

square. The parameter vector, �, is of dimension n.

N(� � �1�C1)�N(� � �2�C2) � �c �N(� � �c�Cc) (A.1)

where

Cc �
�
C�1

1 � C�1
2

��1 (A.2)

�c � Cc
�
C�1

1 �1 � C�1
2 �2

�
(A.3)

�c � (2	)�
n
2

�Cc�
1
2

�C1�
1
2 �C2�

1
2

exp
��1

2

�
�T

1 C�1
1 �1 � �T

2 C�1
2 �2 � �T

c C�1
c �c

��
(A.4)

This identity extends in an obvious manner to products of larger numbers

of Gaussians.
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A.2 Linear transformation of a Gaussian

If a linear transformation of the random vector � obeys an i.i.d. Gaus-

sian distribution, then p(�) can be expressed as a multivariate Gaussian

distribution:

N
�
B� � �� �2Im

�
� �l �N

�
� � (BTB)�1BT�� �2(BTB)�1

�
(A.5)

where

�l � (2	�2)
n�m

2
��BTB

���1
2 exp

�� 1
2�2

�
�T�� �TB(BTB)�1BT�

��
(A.6)

and n and m are the dimensions of � and B�, respectively. This can be

verified by multiplying out and matching terms.



Derivation of posterior distributions B
This appendix outlines some of the derivations required in the text. In each

of the three sections, the same basic manipulations are performed, but we go

into some detail in order to avoid ambiguity and to aid reimplementation.

B.1 Marginal posterior for reversible-jump moves

The expression for the acceptance probability in �4.4.2 requires knowledge

of the following distribution, up to a constant of proportionality:1

p(k� � x� af � �
2
a � �

2
e ) � p(k�)

�
p(x � k�� a� �2

e )� �� �
Likelihood

p(au � �2
a ) dau (B.1)

The approximate likelihood (eq. 4.13) can be rewritten as

p
�
x � k�� a� �2

e

� � N
�
x1 �Xf af �Xuau � 0� �2

e Ine

�
(B.2)

� N
�
Xuau � x1 �Xf af� �� �

� ef

� �2
e Ine

�
(B.3)

such that ef is the excitation signal which would need to be applied to an

AR model containing only those terms whose parameters are included in af .

Using the identity of �A.2, this Gaussian can be rearranged as

p
�
x � k�� a� �2

e

�
� �lau N

�
au � �lau

�Clau

�
(B.4)

1For clarity, the (�)(k�) notation is neglected in this section, as all instances of a and X are
associated with the model of order k�.
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where

Clau � �2
e

�
XT

u Xu

��1
(B.5)

�lau
�
�
XT

u Xu

��1
XT

u ef (B.6)

�lau �
exp

�� 1
2�2

e

�
eT

f ef � eT
f Xu(XT

u Xu)�1XT
u ef

��
(
�

2	�e)ne�nu
*
�XT

u Xu�
(B.7)

and nu is the number of terms in au.

Now that the likelihood is in the convenient form of a Gaussian in au,

it can be multiplied by the prior on au (eq. 4.15) to form the integrand

of equation (B.1):

p(x� au � k�� af � �
2
a � �

2
e ) � p(x � k�� a� �2

e ) p(au � �2
a ) (B.8)

� �lau N
�
au � �lau

�Clau

�
N
�
au � 0�Cpau

�
(B.9)

Since the prior is conjugate, this product can be rearranged in the form

of a single Gaussian:

� �cau N
�
au � �cau

�Ccau

�
(B.10)

where

Ccau �
�
C�1

lau
� C�1

pau

��1 (B.11)

�cau
� CcauC

�1
lau
�lau
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C�1
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��
(B.13)

which simplify, after much cancellation, to

Ccau �
�

1
�2

e
XT

u Xu � C�1
pau

��1 (B.14)
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e
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e
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Now equation (B.1) can be written in the form

p(k� � x� af � �
2
a � �

2
e ) � p(k�)�cau

�
N
�
au � �cau

�Ccau

�
dau (B.17)

but the unbounded integral is equal to unity, so

� p(k�)�cau (B.18)

B.2 Derivation of marginal posterior for �u

In �5.5.2.1, it is necessary to sample from the distribution

p(�u � y��f � b�f
� �2

b � �
2
e ) � p(�u)

�
p(y � �� b�� �2

e )� �� �
Likelihood

p(b�u
� �2

b ) db�u
(B.19)

The steps in this derivation are very similar to those required in �B.1 to find

the acceptance probability for reversible-jump moves when the parameters

are proposed from their full conditional distributions.

The approximate likelihood (eq. 5.17) can be rewritten as

p
�
y � �� b�� �2

e

� � N
�
y1 � Y�f

b�f
� Y�u

b�u
� 0� �2

e Ine

�
(B.20)

� N
�
Y�u

b�u
� y1 � Y�f

b�f� �� �
� ef

� �2
e Ine

�
(B.21)

such that ef is the excitation signal which would need to be applied to the

AR model if x was reconstructed from y using only the NAR model terms

in the partition (�)�f
.

After some manipulation, this Gaussian can be rearranged as

p
�
y � �� b�� �2

e

�
� �lb�u

N
�
b�u

� �lb�u
�Clb�u

�
(B.22)
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where

Clb�u
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(B.25)

and n�u
is the number of ones in �u.

Now that the likelihood is in the convenient form of a Gaussian in b�u
,

it can be multiplied by the prior on b�u
(eq. 5.19) to form the integrand

of equation (B.19):

p(y� b�u
� �� b�f

� �2
b � �

2
e )

� p(y � �� b�� �2
e ) p(b�u

� �2
b ) (B.26)

� �lb�u
N
�
b�u

� �lb�u
�Clb�u

�
N
�
b�u

� 0�Cpb�u

�
(B.27)

Since the prior is conjugate, this product can be rearranged in the form

of a single Gaussian:

� �cb�u
N
�
b�u

� �cb�u
�Ccb�u

�
(B.28)

where

Ccb�u
�
�
C�1

lb�u
� C�1
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which simplify, after much cancellation, to

Ccb�u
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e
YT
�u
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��1
(B.32)
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Now equation (B.19) can be written in the form

p(�u � y��f � b�f
� k� a(k)� �2

b � �
2
e )

� p(�u)�cb�u

�
N
�
b�u

� �cb�u
�Ccb�u

�
db�u

(B.35)

but the unbounded integral is equal to unity, so

� p(�u)�cb�u
(B.36)

When sampling �u, those parts of �cb�u
which are independent of �u can be

neglected, resulting in equation (5.32).

B.3 Indicators for sinusoidal basis functions

In �7.3.4.1, it is necessary to sample from the distribution

p(�u � �f � c�f
� k� a(k)� �2

c � �
2
e )

� p(�u)
�

p(x � �� c� � k� a(k)� �2
e )� �� �

Likelihood

p(c�u
� �2

c ) dc�u
(B.37)

From the modelling equations for the sinusoid + AR model (eq. 7.20, 7.21

& 7.23), we have

e � A(k)w � A(k)x� A(k)s � A(k)x� A(k)G

�
c Æ
	
�

�


�
(B.38)
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where Æ denotes the elementwise product, and the basis functions are ar-

ranged such that the in-phase and quadrature bases appear in positions

	1 � � �n�
 and 	n� � 1 � � �2n�
 respectively, in the same order, where n� �

1
2nc.

Hence the likelihood (eq. 7.27) can be rewritten as

p
�
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e
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c�f
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e
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� ef

� �2
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(B.40)

where ef is the excitation signal which would need to be applied to the AR

model to produce x if only the sinusoids in the partition (�)�f
were used.

This Gaussian can then be rearranged, using the identity of �A.2, as

p
�
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e
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where nc�u
is the length of the vector c�u, which can either be zero or two,

as there is only one indicator in �u, and it controls a pair of basis func-

tions (see �7.3.1.2).

Now that the likelihood is in the convenient form of a Gaussian in c�u ,

it can be multiplied by the prior on c�u (eq. 7.28) to form the integrand

of equation (B.37):

p(x� c�u � �� c�f
� k� a(k)� �2

c � �
2
e )

� p(x � �� c�� k� a(k)� �2
e ) p(c�u � �2

c ) (B.45)
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which is a product of Gaussians and so can be simplified using the iden-

tity of �A.1 to

� �cc�u
�N

�
c�u � �cc�u

�Ccc�u

�
(B.47)

where
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which simplify, after much cancellation, to
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Now equation (B.37) can be written in the form

p(�u � �f � c�f
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but the unbounded integral is equal to unity, so

� p(�u)�cc�u
(B.55)

Sampling step (7.32) requires the full conditional distribution for c�u.

This can be obtained from the likelihood using Bayes’ theorem (eq. 2.3):

p(c�u � �� c�f
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c � �
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which has already been derived (eq. B.47) as

� N
�
c�u � �cc�u

�Ccc�u

�
(B.57)



Demonstration CD C
This thesis is accompanied by a compact disc containing examples of sig-

nals processed by the restoration algorithms. All signals were processed

at 44.1 kHz, and have had TPDF dither (see �7.1.4.1) added before be-

ing quantised to 16 bits.

The vocal extract winner is taken from the left channel of the track I Am

What You See on the album Last Dance by Jason Rebello and Joy Rose.1

The extract violins is taken from the right channel of the track Violins on

the CD Sound Check by Alan Parsons and Stephen Court. The extract

piano is taken from Une Larme by Mussorgsky, performed by Jenő Jandó,2

using the left channel.

1Catalogue number ATJR001.
2Available on the Naxos CD 8.550044.
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